Sensitivity of wavepackets in jets to nonlinear effects: The role of the critical layer

阅读量:

75

作者:

G TissotM ZhangFC LajúsAVG CavalieriP Jordan

展开

摘要:

Linear instability waves, or wavepackets, are key building blocks for the jet-noise problem. It has been shown in previous work that linear models correctly predict the evolution of axisymmetric wavepackets up to the end of the potential core of subsonic turbulent jets. Beyond this station, linear models fail, and nonlinearity is the likely missing piece. The essential underlying nonlinear mechanisms are unknown, and it remains unclear how these should be incorporated in a reduced-order model. The nonlinear interactions are considered in this work as an 'external' harmonic forcing added to the standard linear model. This modelling framework is explored using a locally parallel resolvent analysis to determine optimal forcing and associated responses, and a global approach based on 4D-Var data assimilation aimed at finding the optimal forcing of the parabolised stability equations that would minimise errors in the predictions of wavepackets. In all of the problems considered, the critical layer is found to be relevant: it is the position where sensitivity of wavepackets to nonlinearity is greatest. It is seen that disturbances are forced around the critical layer, and tilted by shear as they are advected, in a manner suggestive of an Orr-like mechanism. The ensemble of results suggests that critical-layer effects play a central role in the dynamics of wavepackets in subsonic turbulent jets, and that inclusion of such effects may remedy the shortcomings of linear reduced-order models.

展开

DOI:

10.1017/jfm.2016.735

被引量:

16

年份:

2017

通过文献互助平台发起求助,成功后即可免费获取论文全文。

我们已与文献出版商建立了直接购买合作。

你可以通过身份认证进行实名认证,认证成功后本次下载的费用将由您所在的图书馆支付

您可以直接购买此文献,1~5分钟即可下载全文,部分资源由于网络原因可能需要更长时间,请您耐心等待哦~

身份认证 全文购买

相似文献

参考文献

引证文献

来源期刊

引用走势

2017
被引量:11

站内活动

辅助模式

0

引用

文献可以批量引用啦~
欢迎点我试用!

关于我们

百度学术集成海量学术资源,融合人工智能、深度学习、大数据分析等技术,为科研工作者提供全面快捷的学术服务。在这里我们保持学习的态度,不忘初心,砥砺前行。
了解更多>>

友情链接

百度云百度翻译

联系我们

合作与服务

期刊合作 图书馆合作 下载产品手册

©2025 Baidu 百度学术声明 使用百度前必读

引用