Capture CO2 from Ambient Air Using Nanoconfined Ion Hydration
摘要:
Water confined in nanoscopic pores is essential in determining the energetics of many physical and chemical systems. Herein, we report a recently discovered unconventional, reversible chemical reaction driven by water quantities in nanopores. The reduction of the number of water molecules present in the pore space promotes the hydrolysis of CO32? to HCO3? and OH?. This phenomenon led to a nano‐structured CO2 sorbent that binds CO2 spontaneously in ambient air when the surrounding is dry, while releasing it when exposed to moisture. The underlying mechanism is elucidated theoretically by computational modeling and verified by experiments. The free energy of CO32? hydrolysis in nanopores reduces with a decrease of water availability. This promotes the formation of OH?, which has a high affinity to CO2. The effect is not limited to carbonate/bicarbonate, but is extendable to a series of ions. Humidity‐driven sorption opens a new approach to gas separation technology.
展开
DOI:
10.1002/anie.201507846
被引量:
年份:
2015
相似文献
参考文献
引证文献
引用走势
辅助模式
引用
文献可以批量引用啦~
欢迎点我试用!