Activation of different Wnt/|[beta]|-catenin signaling components in mammary epithelium induces transdifferentiation and the formation of pilar tumors

阅读量:

55

摘要:

The Wnt/beta-catenin signaling pathway controls cell fate and neoplastic transformation. Expression of an endogenous stabilized beta-catenin (DeltaE3 beta-catenin) in mammary epithelium leads to the transdifferentiation into epidermis- and pilar-like structures. Signaling molecules in the canonical Wnt pathway upstream from beta-catenin induce glandular tumors but it is not clear whether they also cause squamous transdifferentiation. To address this question we have now investigated mammary epithelium from transgenic mice that express activating molecules of the Wnt pathway: Wnt10b, Int2/Fgf3, CK2alpha, DeltaE3 beta-catenin, Cyclin D1, and dominant negative (dn) GSK3beta. Cytokeratin 5 (CK5), which is expressed in both mammary myoepithelium and epidermis, and the epidermis-specific CK1 and CK6 were used as differentiation markers. Extensive squamous metaplasias and widespread expression of CK1 and CK6 were observed in DeltaE3 beta-catenin transgenic mammary tissue. Wnt10b and Int2 transgenes also induced squamous metaplasias, but expression of CK1 and CK6 was sporadic. While CK5 expression in Wnt10b transgenic tissue was still confined to the lining cell layer, its expression in Int2 transgenic tissue was completely disorganized. In contrast, cytokeratin expression in CK2alpha, dnGSK3beta and Cyclin D1 transgenic mammary tissues was similar to that in DeltaE3 beta-catenin tissue. In support of transdifferentiation, expression of hard keratins specific for hair and nails was observed in pilar tumors. These results demonstrate that the activation of Wnt signaling components in mammary epithelium induces not only glandular tumors but also squamous differentiation, possibly by activating LEF-1, which is expressed in normal mammary epithelium.

展开

DOI:

10.1038/sj.onc.1205686

被引量:

273

年份:

2002

相似文献

参考文献

引证文献

辅助模式

0

引用

文献可以批量引用啦~
欢迎点我试用!

关于我们

百度学术集成海量学术资源,融合人工智能、深度学习、大数据分析等技术,为科研工作者提供全面快捷的学术服务。在这里我们保持学习的态度,不忘初心,砥砺前行。
了解更多>>

友情链接

百度云百度翻译

联系我们

合作与服务

期刊合作 图书馆合作 下载产品手册

©2025 Baidu 百度学术声明 使用百度前必读

引用