Correlation Analysis of Rate Constants for Dechlorination by Zero-Valent Iron
摘要:
Dehalogenation is among the most important processes involved in contaminant fate, but despite all the work that has been done on the kinetics of dehalogenation, there are few linear free energy relationships (LFERs) that can be used to explain or predict rates of dehalogenation by environmental reductants. Previously, we summarized kinetic data for dehalogenation of chlorinated alkanes and alkenes by zero-valent iron (Fe0) and showed that correlation analysis of these data with published two-electron reduction potentials did not give a simple relationship. In this study, we report successful LFERs based on estimated lowest unoccupied molecular orbital (LUMO) energies calculated from semiempirical (AM1 and PM3) and ab initio methods (6-31G*) and one-electron reduction potentials. Solvation effects can be modeled with COSMO and incorporated into semiempirical estimates of ELUMO, but this did not improve the correlation with k. The best LFER (log k = 5.71.5 ELUMO) explains 83% of the variability in surface area-normalized rate constants (k) with ab initio LUMO energies. The LFER is improved by correcting for statistical bias introduced by back transformation from log-linear regression models. New kinetic data for six compounds are compared with rate constants predicted using the unbiased LFER.
展开
关键词:
blood lead lead-contaminated house dust soil lead exposure risk assessment children environmental exposure prevention standards lead poisoning
DOI:
10.1021/es9802551
被引量:
年份:
1998





通过文献互助平台发起求助,成功后即可免费获取论文全文。
相似文献
参考文献
引证文献
引用走势
辅助模式
引用
文献可以批量引用啦~
欢迎点我试用!