RACK-1 Acts with Rac GTPase Signaling and UNC-115/abLIM in Caenorhabditis elegans Axon Pathfinding and Cell Migration

来自 EBSCO

阅读量:

45

作者:

RS DemarcoEA LundquistAD Chisholm

展开

摘要:

Migrating cells and growth cones extend lamellipodial and filopodial protrusions that are required for outgrowth and guidance. The mechanisms of cytoskeletal regulation that underlie cell and growth cone migration are of much interest to developmental biologists. Previous studies have shown that the Arp2/3 complex and UNC-115/abLIM act redundantly to mediate growth cone lamellipodia and filopodia formation and axon pathfinding. While much is known about the regulation of Arp2/3, less is known about regulators of UNC-115/abLIM. Here we show that theCaenorhabditis eleganscounterpart of the Receptor for Activated C Kinase (RACK-1) interacts physically with the actin-binding protein UNC-115/abLIM and that RACK-1 is required for axon pathfinding. Genetic interactions indicate that RACK-1 acts cell-autonomously in the UNC-115/abLIM pathway in axon pathfinding and lamellipodia and filopodia formation, downstream of the CED-10/Rac GTPase and in parallel to MIG-2/RhoG. Furthermore, we show that RACK-1 is involved in migration of the gonadal distal tip cells and that the signaling pathways involved in this process might be distinct from those involved in axon pathfinding. In sum, these studies pinpoint RACK-1 as a component of a novel signaling pathway involving Rac GTPases and UNC-115/abLIM and suggest that RACK-1 might be involved in the regulation of the actin cytoskeleton and lamellipodia and filopodia formation in migrating cells and growth cones. In the developing nervous system, the growth cone guides axons of neurons to their correct targets in the organism. The growth cone is a highly dynamic specialization at the tip of the axon that senses cues and responds by crawling toward its target, leaving the axon behind. Key to growth cone motility are dynamic cellular protrusions called lamellipodia and filopodia. These protrusions are required for growth cone movement and steering. The genes that are involved in lamellipodia and filopodia formation in the growth cone are still being discovered, and studies to understand how these genes act together in cell signaling events that control growth cone movement are in their infancy. Here we report discovery of a new gene necessary for growth cone movement inCaenorhabditis eleganscalledrack-1. This gene is conserved in vertebrates and is involved in cellular signaling. We show that it interacts in a novel manner with other cell signaling genes (theRac GTPasegenes) and a gene involved in lamellipodia and filopodia formation, calledunc-115/abLIM. We think thatrack-1is involved in a novel cellular signaling event involving Rac GTPases that regulates lamellipodia and filopodia protrusion in the growth cone during nervous system development.

展开

DOI:

10.1371/journal.pgen.1001215

被引量:

61

年份:

2010

相似文献

参考文献

引证文献

辅助模式

0

引用

文献可以批量引用啦~
欢迎点我试用!

关于我们

百度学术集成海量学术资源,融合人工智能、深度学习、大数据分析等技术,为科研工作者提供全面快捷的学术服务。在这里我们保持学习的态度,不忘初心,砥砺前行。
了解更多>>

友情链接

百度云百度翻译

联系我们

合作与服务

期刊合作 图书馆合作 下载产品手册

©2025 Baidu 百度学术声明 使用百度前必读

引用