Surface-assisted photoalignment of discotic liquid crystals by nonpolarized light irradiation of photo-cross-linkable polymer thin films.

来自 ACS

阅读量:

39

作者:

S FurumiK Ichimura

展开

摘要:

In this article, we describe the surface-assisted photoalignment of discotic liquid crystals (DLCs) on thin films of photo-cross-linkable polymers with cinnamoyl moieties as the side chains. Oblique irradiation of the polymer thin films with nonpolarized UV light at 313 nm brought about inclined orientation of the cinnamoyl residues as a result of their direction-selective photoisomerization and photodimerization. The DLC molecules on the photoirradiated polymer films were aligned in a tilted hybrid manner. This means that the DLC directors are continuously altered from the substrate to the DLC film surface so as to minimize the elastic free energy. Interestingly, we found that the tilted direction of aligned DLC molecules is clearly influenced by the chemical structures of the cinnamate-containing polymers. When a poly(vinyl cinnamate) thin film was obliquely exposed to nonpolarized UV light, the DLCs were inclined to the direction opposite to the UV light propagation. In a keen contrast, the thin film of poly(methacrylate)s tethering cinnamoyl groups, which was obliquely exposed to nonpolarized UV light in advance, provided the tilting DLC direction in parallel with the light propagation. The results were supported by tilted orientation of calamitic (rod-shaped) liquid crystal on the obliquely irradiated polymer films. Such photoalignment behavior of the DLCs can be rationalized by anchoring balance between intermolecular interaction of the DLC molecules with the photodimers of polymer films and those with the remaining E-isomers of cinnamoyl side chains at the film interface. The present technique of DLC photoalignment opens promising ways not only to understand anisotropic physical properties of DLCs, but also to design and fabricate novel nanodevices for photonics and electronics applications.

展开

DOI:

10.1021/jp065686h

被引量:

37

年份:

2007

通过文献互助平台发起求助,成功后即可免费获取论文全文。

相似文献

参考文献

引证文献

辅助模式

0

引用

文献可以批量引用啦~
欢迎点我试用!

关于我们

百度学术集成海量学术资源,融合人工智能、深度学习、大数据分析等技术,为科研工作者提供全面快捷的学术服务。在这里我们保持学习的态度,不忘初心,砥砺前行。
了解更多>>

友情链接

百度云百度翻译

联系我们

合作与服务

期刊合作 图书馆合作 下载产品手册

©2025 Baidu 百度学术声明 使用百度前必读

引用