Adhesion Forces of Lipids in a Phospholipid Membrane Studied by Molecular Dynamics Simulations
摘要:
Lipid adhesion forces can be measured using several experimental techniques, but none of these techniques provide insight on the atomic level. Therefore, we performed extensive nonequilibrium molecular dynamics simulations of a phospholipid membrane in the liquid-crystalline phase out of which individual lipid molecules were pulled. In our method, as an idealization of the experimental setups, we have simply attached a harmonic spring to one of the lipid headgroup atoms. Upon retraction of the spring, the force needed to drag the lipid out of the membrane is recorded. By simulating different retraction rates, we were able to investigate the high pull rate part of the dynamical spectrum of lipid adhesion forces. We find that the adhesion force increases along the unbinding path, until the point of rupture is reached. The maximum value of the adhesion force, the rupture force, decreases as the pull rate becomes slower, and eventually enters a friction-dominated regime. The computed bond lengths depend on the rate of rupture, and show some scatter due to the nonequilibrium nature of the experiment. On average, the bond length increases from ∼1.7 nm to 2.3 nm as the rates go down. Conformational analyses elucidate the detailed mechanism of lipid-membrane bond rupture. We present results of over 15 ns of membrane simulations. Implications for the interpretation and understanding of experimental rupture data are discussed.
展开
DOI:
10.1016/S0006-3495(98)74016-0
被引量:
年份:
1998
相似文献
参考文献
引证文献
辅助模式
引用
文献可以批量引用啦~
欢迎点我试用!