Temporo-spatial IMRT optimization: concepts, implementation and initial results.

阅读量:

37

作者:

A TrofimovE RietzelHM LuB MartinS JiangGTY ChenT Bortfeld

展开

摘要:

With the recent availability of 4D-CT, the accuracy of information on internal organ motion during respiration has improved significantly. We investigate the utility of organ motion information in IMRT treatment planning, using an in-house prototype optimization system. Four approaches are compared: (1) planning with optimized margins, based on motion information; (2) the 'motion kernel' approach, in which a more accurate description of the dose deposit from a pencil beam to a moving target is achieved either through time-weighted averaging of influence matrices, calculated for different instances of anatomy (subsets of 4D-CT data, corresponding to various phases of motion) or through convolution of the pencil beam kernel with the probability density function describing the target motion; (3) optimal gating, or tracking with beam intensity maps optimized independently for each instance of anatomy; and (4) optimal tracking with beam intensity maps optimized simultaneously for all instances of anatomy. The optimization is based on a gradient technique and can handle both physical (dose-volume) and equivalent uniform dose constraints. Optimization requires voxel mapping from phase to phase in order to score the dose in individual voxels as they move. The results show that, compared to the other approaches, margin expansion has a significant disadvantage by substantially increasing the integral dose to patient. While gating or tracking result in the best dose conformation to the target, the former elongates treatment time, and the latter significantly complicates the delivery procedure. The 'motion kernel' approach does not provide a dosimetric advantage, compared to optimal tracking or gating, but might lead to more efficient delivery. A combination of gating with the 'motion kernel' or margin expansion approach will increase the duty cycle and may provide one with the most efficient solution, in terms of complexity of the delivery procedure and dose conformality to the target.

展开

DOI:

10.1021/ja900174t

被引量:

41

年份:

2015

通过文献互助平台发起求助,成功后即可免费获取论文全文。

我们已与文献出版商建立了直接购买合作。

你可以通过身份认证进行实名认证,认证成功后本次下载的费用将由您所在的图书馆支付

您可以直接购买此文献,1~5分钟即可下载全文,部分资源由于网络原因可能需要更长时间,请您耐心等待哦~

身份认证 全文购买

相似文献

参考文献

引证文献

来源期刊

引用走势

2015
被引量:11

辅助模式

0

引用

文献可以批量引用啦~
欢迎点我试用!

引用