The pace of rhyolite differentiation and storage in an 'archetypical' silicic magma system, Long Valley, California

作者:

JI SimonMR Reid

展开

摘要:

Time scales of silicic magma processes are an important source of information pertaining to the thermal and mass fluxes through the crust but are difficult to quantify. Here we report ion microprobe 238U– 206Pb ages for individual zircons from rhyolites from Long Valley caldera, California, and use these data to refine the relationship of production and storage of the 0.8–2.1 Ma precaldera Glass Mountain (GM) rhyolites to that of the caldera-related Bishop Tuff (BT) rhyolite. We also examine the timing of differentiation in the compositionally zoned BT. Most zircon crystallization in the 3 studied GM rhyolites occurred in two intervals between 2.0 and 1.7 Ma and between 1.1 and 0.85 Ma. Collectively, they support previous inferences based on Sr isotope considerations that differentiation and crystallization in silicic magmas can precede eruption by hundreds of ky. For the BT, zircons contained in the earlier, more evolved part of the eruption have U contents (mostly > 1800–4500 ppm) that are higher than those contained in the later, less evolved part of the eruption (mostly 100's to 2000 ppm). When scarce Mesozoic-aged zircons are excluded, the mean pre-eruption crystallization age for the late BT zircons studied here is about 90 ky older than a 760 ± 2 ka Ar / Ar sanidine eruption age. An identical mean pre-eruption zircon age is obtained for the early part of the BT eruption as well as in an earlier study and implies virtually simultaneous crystallization of compositionally distinct melts. Based on the largely distinct chemical and age characteristics of the zircon age populations, we conclude that the GM and BT rhyolites record episodes of punctuated and independent evolution rather than the periodic tapping of a long-lived magma chamber. Sr isotope characteristics of BT minerals previously used to support inheritance of those minerals from GM magmas can be explained by radiogenic ingrowth and by crystal growth from isotopically heterogeneous domains in the nascent BT magma chamber; evidence for the latter is provided by anomalously radiogenic feldspars.

展开

DOI:

10.1016/j.epsl.2005.03.013

被引量:

157

年份:

2005

通过文献互助平台发起求助,成功后即可免费获取论文全文。

相似文献

参考文献

引证文献

引用走势

2011
被引量:25

站内活动

辅助模式

0

引用

文献可以批量引用啦~
欢迎点我试用!

关于我们

百度学术集成海量学术资源,融合人工智能、深度学习、大数据分析等技术,为科研工作者提供全面快捷的学术服务。在这里我们保持学习的态度,不忘初心,砥砺前行。
了解更多>>

友情链接

百度云百度翻译

联系我们

合作与服务

期刊合作 图书馆合作 下载产品手册

©2025 Baidu 百度学术声明 使用百度前必读

引用