A Model "Rebound" Mechanism of Hydroxylation by Cytochrome P450:? Stepwise and Effectively Concerted Pathways, and Their Reactivity Patterns

来自 ACS

阅读量:

70

摘要:

A two-state rebound mechanism of alkane hydroxylation by a model active species of the enzyme cytochrome P450 is studied using density functional theoretic calculations. Theory corroborates Groves's rebound mechanism (Groves, J. T. J. Chem. Educ. 1985, 62, 928), with a key difference,namely that in the two-state rebound the reactivity and product distribution result from the interplay of two reactive states of the active ferryl-oxene (Por(+.)FeO) species of the enzyme: one state is low-spin (doublet) and the other high-spin (quartet). Transition-state structures, intermediates, and product complexes are identified for the two states. The bond activation in either one of the two states involves a hydrogen ion-like transition structure. However, while in the high-spin state there forms a radical that has a significant barrier for rebound, in the low-spin state the rebound is virtually barrierless. Even though one cannot ignore incursion of a small amount of radicals in the low-spin state, it is clear that the radical has a significant lifetime mainly on the high-spin surface. The results are used to gain insight into puzzling experimental data which emerge from studies of ultrafast radical clocks (e.g., Toy, P. H.; Newcomb, M.; Hollenberg, P. F., J. Am. Chem. Sec. 1998, 120, 7719), vis a vis the nature the transition state, deduced from kinetic isotope effect measurements (Manchester, J. I.; Dinnocenzo, J. P.; Higgins, L. A.; Jones, J. P. J. Am. Chem. Sec. 1997, 119, 5069) and stereochemical scrambling patterns (Groves, J. T.; McClusky, G. A.; White, R. E.; Goon, M. J. Biochem. Biophys. Res. Commun. 1978, 81, 154). Understanding the electronic structure of the various species leads to a predictive structure-reactivity picture, based on the two-state reactivity scenario (Shaik, S.; Filatov, M.; Schroder, D.; Schwarz, H. Chem. fur. J. 1998, 4, 193). The model makes it possible to predict the dependence of the relative rates of the two states, and of the corresponding steps as a function of the nature of the alkane, the resulting alkyl radical, and the binding capability of the thiolate proximal ligand of the active species.

展开

DOI:

10.1021/ja991878x

被引量:

665

年份:

2000

通过文献互助平台发起求助,成功后即可免费获取论文全文。

相似文献

参考文献

引证文献

辅助模式

0

引用

文献可以批量引用啦~
欢迎点我试用!

关于我们

百度学术集成海量学术资源,融合人工智能、深度学习、大数据分析等技术,为科研工作者提供全面快捷的学术服务。在这里我们保持学习的态度,不忘初心,砥砺前行。
了解更多>>

友情链接

百度云百度翻译

联系我们

合作与服务

期刊合作 图书馆合作 下载产品手册

©2025 Baidu 百度学术声明 使用百度前必读

引用