Gammahydroxybutyrate: an endogenous regulator of energy metabolism.

阅读量:

52

作者:

M Mamelak

展开

摘要:

Gammahydroxybutyrate is a naturally occurring metabolite of many mammalian tissues. Although its administration produces a wide range of pharmacological effects, its normal function has never been clearly defined. GHB can induce NREM and REM sleep, anaesthesia, hypothermia, and a trance-like state which has been considered a model for petit mal epilepsy. It markedly increases brain dopamine levels. It has been touted as a central neurotransmitter or neuromodulator, and high affinity brain receptors, as well as central mechanisms for its synthesis, uptake and release have been demonstrated in support of this. But GHB is also found in many peripheral tissues and in some of these in higher concentrations than in the brain. No explanation has been offered for its presence in these tissues. A number of studies indicate that GHB can reduce energy substrate consumption in both brain and peripheral tissues, and that it can protect these tissues from the damaging effects of anoxia or excessive metabolic demand. Indeed there is some evidence to suggest that endogenous GHB levels rise under these circumstances. GHB appears to act through the endogenous opioid system, since in the brain, at least, GHB raises dynorphin levels and its metabolic and pharmacological effects can be blocked by naloxone. These, and other observations detailed in this review, suggest that GHB may function naturally in the induction and maintenance of physiological states, like sleep and hibernation, in which energy utilization is depressed. GHB may also function naturally as an endogenous protective agent when tissue energy supplies are limited.

展开

DOI:

10.1016/S0149-7634(89)80053-3

被引量:

445

年份:

1989

通过文献互助平台发起求助,成功后即可免费获取论文全文。

我们已与文献出版商建立了直接购买合作。

你可以通过身份认证进行实名认证,认证成功后本次下载的费用将由您所在的图书馆支付

您可以直接购买此文献,1~5分钟即可下载全文,部分资源由于网络原因可能需要更长时间,请您耐心等待哦~

身份认证 全文购买

相似文献

参考文献

引证文献

研究点推荐

引用走势

2010
被引量:47

站内活动

辅助模式

0

引用

文献可以批量引用啦~
欢迎点我试用!

关于我们

百度学术集成海量学术资源,融合人工智能、深度学习、大数据分析等技术,为科研工作者提供全面快捷的学术服务。在这里我们保持学习的态度,不忘初心,砥砺前行。
了解更多>>

友情链接

百度云百度翻译

联系我们

合作与服务

期刊合作 图书馆合作 下载产品手册

©2025 Baidu 百度学术声明 使用百度前必读

引用