Endothelial Cell–Matrix Interactions in Neovascularization
摘要:
The success of many therapies in regenerative medicine requires the ability to control the formation of stable vascular networks within tissues. The formation of new blood vessels, or neovascularization, is mediated, in part, by interactions between endothelial cells (ECs) and insoluble factors in the extracellular microenvironment. These interactions are determined by the chemical, physical, and mechanical properties of the matrix. Understanding how extracellular matrices (ECMs) and synthetic scaffolds influence neovascularization can contribute to the fundamental knowledge of normal and diseased tissue physiology and can be used to guide the design of new therapies. The goal of this review is to provide an overview of the complex role EC-matrix interactions play in neovascularization. A particular emphasis is placed on presenting differences in two subsets of ECM, basement membranes and stromal matrices, and identification of the properties of these matrices that define their biological functions. Attempts to apply information about EC-ECM interactions to enhance vascularization of synthetic materials are presented, and areas in need of further research are identified throughout this review. Our understanding of the role EC-matrix interactions play in neovascularization remains limited, but continued progress in this area could be of significant benefit to the design of clinically applicable engineered tissues.
展开
DOI:
10.1089/teb.2007.0115
被引量:
年份:
2008
相似文献
参考文献
引证文献
来源期刊
引用走势
辅助模式
引用
文献可以批量引用啦~
欢迎点我试用!