A scaling theory of bifurcations in the symmetric weak-noise escape problem

阅读量:

35

作者:

RS MaierDL Stein

展开

摘要:

We consider two-dimensional overdamped double-well systems perturbed by white noise. In the weak-noise limit the most probable fluctuational path leading from either point attractor to the separatrix (the most probable escape path, or MPEP) must terminate on the saddle between the two wells. However, as the parameters of a symmetric double-well system are varied, a unique MPEP may bifurcate into two equally likely MPEPs. At the bifurcation point in parameter space, the activation kinetics of the system become non-Arrhenius. We quantify the non-Arrhenius behavior of a system at the bifurcation point, by using the Maslov-WKB method to construct an approximation to the quasistationary probability distribution of the system that is valid in a boundary layer near the separatrix. The approximation is a formal asymptotic solution of the Smoluchowski equation. Our construction relies on a new scaling theory, which yields "critical exponents" describing weak-noise behavior at the bifurcation point, near the saddle.

展开

DOI:

10.1007/BF02183736

被引量:

146

年份:

1996

通过文献互助平台发起求助,成功后即可免费获取论文全文。

我们已与文献出版商建立了直接购买合作。

你可以通过身份认证进行实名认证,认证成功后本次下载的费用将由您所在的图书馆支付

您可以直接购买此文献,1~5分钟即可下载全文,部分资源由于网络原因可能需要更长时间,请您耐心等待哦~

身份认证 全文购买

相似文献

参考文献

引证文献

来源期刊

引用走势

2016
被引量:14

辅助模式

0

引用

文献可以批量引用啦~
欢迎点我试用!

关于我们

百度学术集成海量学术资源,融合人工智能、深度学习、大数据分析等技术,为科研工作者提供全面快捷的学术服务。在这里我们保持学习的态度,不忘初心,砥砺前行。
了解更多>>

友情链接

百度云百度翻译

联系我们

合作与服务

期刊合作 图书馆合作 下载产品手册

©2025 Baidu 百度学术声明 使用百度前必读

引用