The N-end rule.
摘要:
Excerpt The N-end rule relates the in vivo half-life1 of a protein to the identity of its N-terminal residue (Varshavsky 1992). Similar but distinct versions of the N-end rule have been shown to operate in all organisms examined, from mammals to fungi and bacteria. I summarize the current understanding of the N-end rule pathway and describe some of the recent methods that utilize the N-end rule. Features of a protein that confer metabolic instability are called degradation signals, or degrons (Varshavsky 1991). The essential component of one degron, the first to be identified, is a destabilizing N-terminal residue of a protein (Bachmair et al. 1986). This signal is called the N-degron. The N-end rule (defined above) results from the existence of N-degrons containing different destabilizing residues (Varshavsky 1992). In eukaryotes, the N-degron comprises two determinants: a destabilizing N-terminal residue and an internal lysine (or lysines) of a substrate. The lysine residue...
展开
DOI:
10.1101/SQB.1995.060.01.051
被引量:
年份:
1992
通过文献互助平台发起求助,成功后即可免费获取论文全文。
相似文献
参考文献
引证文献
辅助模式
引用
文献可以批量引用啦~
欢迎点我试用!