A generalized Laplacian of Gaussian filter for blob detection and its applications.

阅读量:

160

作者:

HuiKongHaticeCinarAkakinSanjayESarma

展开

摘要:

In this paper, we propose a generalized Laplacian of Gaussian (LoG) (gLoG) filter for detecting general elliptical blob structures in images. The gLoG filter can not only accurately locate the blob centers but also estimate the scales, shapes, and orientations of the detected blobs. These functions can be realized by generalizing the common 3-D LoG scale-space blob detector to a 5-D gLoG scale-space one, where the five parameters are image-domain coordinates (x, y), scales (σ(x), σ(y)), and orientation (θ), respectively. Instead of searching the local extrema of the image's 5-D gLoG scale space for locating blobs, a more feasible solution is given by locating the local maxima of an intermediate map, which is obtained by aggregating the log-scale-normalized convolution responses of each individual gLoG filter. The proposed gLoG-based blob detector is applied to both biomedical images and natural ones such as general road-scene images. For the biomedical applications on pathological and fluorescent microscopic images, the gLoG blob detector can accurately detect the centers and estimate the sizes and orientations of cell nuclei. These centers are utilized as markers for a watershed-based touching-cell splitting method to split touching nuclei and counting cells in segmentation-free images. For the application on road images, the proposed detector can produce promising estimation of texture orientations, achieving an accurate texture-based road vanishing point detection method. The implementation of our method is quite straightforward due to a very small number of tunable parameters.

展开

被引量:

72

年份:

2013

ResearchGate (全网免费下载)

通过文献互助平台发起求助,成功后即可免费获取论文全文。

相似文献

参考文献

引证文献

辅助模式

0

引用

文献可以批量引用啦~
欢迎点我试用!

引用