Biochar and Activated Carbon for Enhanced Trace Organic Contaminant Retention in Stormwater Infiltration Systems
摘要:
To assess the effectiveness of biochar and activated carbon (AC) for enhanced trace organic contaminant (TOrC) retention in stormwater infiltration systems, an approach combining forward-prediction modeling and laboratory verification experiments was employed. Batch and column tests were conducted using representative TOrCs and synthetic stormwater. Based on batch screening tests, two commercially available biochars (BN-biochar and MCG-biochar) and an AC were investigated. The AC exhibited the strongest sorption, followed by MCG-biochar and BN-biochar. Langmuir isotherms provided better fits to equilibrium data than Freundlich isotherms. Due to superior sorption kinetics, 0.2 wt % MCG-biochar in saturated sand columns retained TOrCs more effectively than 1.0 wt % BN-biochar. A forward-prediction intraparticle diffusion model based on the Langmuir isotherm adequately predicted column results when calibrated using only batch parameters, as indicated by a Monte Carlo uncertainty analysis. Case study simulations estimated that an infiltration basin amended with F300-AC or MCG-biochar could obtain sorption-retarded breakthrough times for atrazine of 54 or 5.8 years, respectively, at a 1 in./h infiltration rate. These results indicate that biochars or ACs with superior sorption capacity and kinetics can enhance TOrC retention in infiltration systems, and performance under various conditions can be predicted using results from batch tests.
展开
关键词:
extremely low birth weight infant identical twins intravenous immunoglobulin therapy antiglobulin test transfusion
DOI:
10.1021/acs.est.5b00376
被引量:
年份:
2015

































通过文献互助平台发起求助,成功后即可免费获取论文全文。
相似文献
参考文献
引证文献
辅助模式
引用
文献可以批量引用啦~
欢迎点我试用!