Adjusting batch effects in microarray expression data using empirical Bayes methods
摘要:
Non-biological experimental variation or "batch effects" are commonly observed across multiple batches of microarray experiments, often rendering the task of combining data from these batches difficult. The ability to combine microarray data sets is advantageous to researchers to increase statistical power to detect biological phenomena from studies where logistical considerations restrict sample size or in studies that require the sequential hybridization of arrays. In general, it is inappropriate to combine data sets without adjusting for batch effects. Methods have been proposed to filter batch effects from data, but these are often complicated and require large batch sizes () to implement. Because the majority of microarray studies are conducted using much smaller sample sizes, existing methods are not sufficient. We propose parametric and non-parametric empirical Bayes frameworks for adjusting data for batch effects that is robust to outliers in small sample sizes and performs comparable to existing methods for large samples. We illustrate our methods using two example data sets and show that our methods are justifiable, easy to apply, and useful in practice. Software for our method is freely available at: http://biosun1.harvard.edu/complab/batch/.
展开
DOI:
10.1093/biostatistics/kxj037
年份:
2007













通过文献互助平台发起求助,成功后即可免费获取论文全文。
相似文献
参考文献
引证文献
来源期刊
辅助模式
引用
文献可以批量引用啦~
欢迎点我试用!