Optimal neural population coding of an auditory spatial cue

阅读量:

50

作者:

NS HarperD Mcalpine

展开

摘要:

A sound, depending on the position of its source, can take more time to reach one ear than the other. This interaural (between the ears) time difference (ITD) provides a major cue for determining the source location. Many auditory neurons are sensitive to ITDs, but the means by which such neurons represent ITD is a contentious issue. Recent studies question whether the classical general model (the Jeffress model) applies across species. Here we show that ITD coding strategies of different species can be explained by a unifying principle: that the ITDs an animal naturally encounters should be coded with maximal accuracy. Using statistical techniques and a stochastic neural model, we demonstrate that the optimal coding strategy for ITD depends critically on head size and sound frequency. For small head sizes and/or low-frequency sounds, the optimal coding strategy tends towards two distinct sub-populations tuned to ITDs outside the range created by the head. This is consistent with recent observations in small mammals. For large head sizes and/or high frequencies, the optimal strategy is a homogeneous distribution of ITD tunings within the range created by the head. This is consistent with observations in the barn owl. For humans, the optimal strategy to code ITDs from an acoustically measured distribution depends on frequency; above 400 Hz a homogeneous distribution is optimal, and below 400 Hz distinct sub-populations are optimal.

展开

DOI:

10.1038/nature02768

被引量:

392

年份:

2004

通过文献互助平台发起求助,成功后即可免费获取论文全文。

我们已与文献出版商建立了直接购买合作。

你可以通过身份认证进行实名认证,认证成功后本次下载的费用将由您所在的图书馆支付

您可以直接购买此文献,1~5分钟即可下载全文,部分资源由于网络原因可能需要更长时间,请您耐心等待哦~

身份认证 全文购买

相似文献

参考文献

引证文献

来源期刊

引用走势

2014
被引量:56

辅助模式

0

引用

文献可以批量引用啦~
欢迎点我试用!

引用