Adsorption of the Herbicide 4-Chloro-2-methylphenoxyacetic Acid (MCPA) by Goethite

来自 ACS

阅读量:

50

作者:

M KerstenD TunegaI GeorgievaN VlasovaR Branscheid

展开

摘要:

Interaction between the goethite surface and 4-chloro-2-methylphenoxyacetic acid (MCPA) herbicide was studied using density functional theory (DFT) calculations combined with molecular dynamics (MD). The important step made here lies in the use of a periodic DFT method enabling the study of a mineral surface of different protonation states, in strong contrast with previous molecular modeling studies limited to single protonation state corresponding to the point of zero charge. Different surface OH groups and MCPA proton states were used to mimic the strong effects of pH on the outer- and inner-sphere surface complexes that are theoretically possible, together with their binding energies, and their bond lengths. Modeling both a solvated and a protonated (110) goethite surface provided a major breakthrough in the acidic adsorption regime. An outer-sphere complex and a monodentate inner-sphere complex with the neutral MCPA molecule were found to be the most energetically stable adsorbate forms. MD modeling predicted that the latter forms via the sharing of the carbonyl oxygen between the MCPA carboxylate group and a singly coordinated surface hydroxyl group, releasing an H2O molecule. All the other complexes, including the bidentate inner-sphere complex, had higher relative energies and were therefore less likely. The two most likely DFT-optimized structures were used to constrain a surface complexation model applying the charge distribution multisite complexation (CD-MUSIC) approach. The adsorption constants for the complexes were successfully fitted to experimental batch equilibrium data.

展开

DOI:

10.1021/es502444c

被引量:

15

年份:

2014

通过文献互助平台发起求助,成功后即可免费获取论文全文。

相似文献

参考文献

引证文献

辅助模式

0

引用

文献可以批量引用啦~
欢迎点我试用!

引用