Reciprocal regulation of endothelin-1 and nitric oxide: relevance in the physiology and pathology of the cardiovascular system.

来自 NCBI

阅读量:

104

作者:

GP RossiTM SecciaGG Nussdorfer

展开

摘要:

The endothelium plays a crucial role in the regulation of cardiovascular structure and function by releasing several mediators in response to biochemical and physical stimuli. These mediators are grouped into two classes: (1) endothelium-derived constricting factors (EDCFs) and (2) endothelium-derived relaxing factors (EDCFs), the roles of which are considered to be detrimental and beneficial, respectively. Endothelin-1 (ET-1) and nitric oxide (NO) are the prototypes of EDCFs and EDCFs, respectively, and their effects on the cardiovascular system have been studied in depth. Numerous conditions characterized by an impaired availability of NO have been found to be associated with enhanced synthesis of ET-1, and vice versa, thereby suggesting that these two factors have a reciprocal regulation. Experimental studies have provided evidence that ET -1 may exert a bidirectional effect by either enhancing NO production via ETB receptors located in endothelial cells or blunting it via ET A receptors prevalently located in the vascular smooth muscle cells. Conversely, NO was found to inhibit ET-1 synthesis in different cell types. In vitro and in vivo studies have started to unravel the molecular mechanisms involved in this complex interaction. It has been clarified that several factors affect in opposite directions the transcription of preproET-1 and NO-synthase genes, nuclear factor-κB and peroxisome proliferator-activated receptors playing a key role in these regulatory mechanisms. ET-1 and NO interplay seems to have a great relevance in the physiological regulation of vascular tone and blood pressure, as well as in vascular remodeling. Moreover, an imbalance between ET-1 and NO systems may underly the mechanisms involved in the pathogenesis of systemic and pulmonary hypertension and atherosclerosis.

展开

DOI:

10.1039/B103275P

被引量:

2087

年份:

2001

通过文献互助平台发起求助,成功后即可免费获取论文全文。

相似文献

参考文献

引证文献

引用走势

2010
被引量:249

辅助模式

0

引用

文献可以批量引用啦~
欢迎点我试用!

关于我们

百度学术集成海量学术资源,融合人工智能、深度学习、大数据分析等技术,为科研工作者提供全面快捷的学术服务。在这里我们保持学习的态度,不忘初心,砥砺前行。
了解更多>>

友情链接

百度云百度翻译

联系我们

合作与服务

期刊合作 图书馆合作 下载产品手册

©2025 Baidu 百度学术声明 使用百度前必读

引用