Pleistocene recharge to midcontinent basins: effects on salinity structure and microbial gas generation

阅读量:

63

作者:

JC McintoshLM WalterAM Martini

展开

摘要:

The hydrogeochemistry of saline-meteoric water interface zones in sedimentary basins is important in constraining the fluid migration history, chemical evolution of basinal brines, and physical stability of saline formation waters during episodes of freshwater recharge. This is especially germane for interior cratonic basins, such as the Michigan and Illinois basins. Although there are large differences in formation water salinity and hydrostratigraphy in these basins, both are relatively quiescent tectonically and have experienced repeated cycles of glaciation during the Pleistocene. Exploration for unconventional microbial gas deposits, which began in the upper Devonian-age Antrim Shale at the northern margin of the Michigan Basin, has recently extended into the age-equivalent New Albany Shale of the neighboring Illinois Basin, providing access to heretofore unavailable fluid samples. These reveal an extensive regional recharge system that has profoundly changed the salinity structure and induced significant biogeochemical modification of formation water elemental and isotope geochemistry. New-formation water and gas samples were obtained from Devonian-Mississippian strata in the Illinois Basin. These included exploration wells in the New Albany Shale, an organic-rich black shale of upper Devonian age, and formation waters from over- and underlying regional aquifer systems (Siluro-Devonian and Mississippian age). The hydrostratigraphic relations of major aquifers and aquitards along the eastern margin of the Illinois Basin critically influenced fluid migration into the New Albany Shale. The New Albany Shale formation water chemistry indicates significant invasion of meteoric water, with δD values as low as −46.05‰, into the shale. The carbon stable isotope system (δ 13C values as high as 29.4‰), coupled with δ 18O, δD, and alkalinity of formation waters (alkalinity ≤24.08 meq/kg), identifies the presence of microbial gas associated with meteoric recharge. Regional geochemical patterns identify the underlying Siluro-Devonian carbonate aquifer system as the major conduit for freshwater recharge into the fractured New Albany Shale reservoirs. Recharge from overlying Mississippian carbonates is only significant in the southernmost portion of the basin margin where carbonates directly overlie the New Albany Shale. Recharge of dilute waters (Cl − <1000 mM) into the Siluro-Devonian section has suppressed formation water salinity to depths as great as 1 km across the entire eastern Illinois Basin margin. Taken together with salinity and stable isotope patterns in age-equivalent Michigan Basin formation waters, they suggest a regional impact of recharge of δ 18O- and δD-depleted fluids related to Pleistocene glaciation. Devonian black shales at both basin margins have been affected by recharge and produced significant volumes of microbial methane. This recharge is also manifested in different salinity gradients in the two basins because of their large differences in original formation water salinity. Given the relatively quiet tectonic history and subdued current topography in the midcontinent region, it is likely that repeated cycles of glacial meltwater invasion across this region have induced a strong disequilibrium pattern in fluid salinity and produced a unique class of unconventional shale-hosted gas deposits.

展开

DOI:

10.1016/S0016-7037(01)00885-7

被引量:

189

年份:

2002

通过文献互助平台发起求助,成功后即可免费获取论文全文。

我们已与文献出版商建立了直接购买合作。

你可以通过身份认证进行实名认证,认证成功后本次下载的费用将由您所在的图书馆支付

您可以直接购买此文献,1~5分钟即可下载全文,部分资源由于网络原因可能需要更长时间,请您耐心等待哦~

身份认证 全文购买

相似文献

参考文献

引证文献

来源期刊

引用走势

2015
被引量:29

辅助模式

0

引用

文献可以批量引用啦~
欢迎点我试用!

关于我们

百度学术集成海量学术资源,融合人工智能、深度学习、大数据分析等技术,为科研工作者提供全面快捷的学术服务。在这里我们保持学习的态度,不忘初心,砥砺前行。
了解更多>>

友情链接

百度云百度翻译

联系我们

合作与服务

期刊合作 图书馆合作 下载产品手册

©2025 Baidu 百度学术声明 使用百度前必读

引用