Do methane seeps support distinct macrofaunal assemblages? Observations on community structure and nutrition from the northern California slope and shelf

阅读量:

54

作者:

LA LevinDW JamesCM MartinAE RathburnRH Michener

展开

摘要:

Although the conspicuous epifauna of reducing environments are known to exhibit strong morphological, physiological, and nutritional adaptations for life in these habitats, it is less clear whether infaunal organisms do so as well. We examined metazoan macrofauna from methane-seep sediments on the northern California slope (500 to 525 m depth) and from seep and non-seep sediments at 3 locations on the shelf (31 to 53 m depth) to determine whether the community structure and nutritional sources of seep infauna were distinct from those in non-seep, margin sediments. Seep macrofauna consisted mainly of normal slope and shelf species found in productive settings. Several macrofaunal taxa, such as Capitella sp., Diastylopsis dawsoni, and Synidotea angulata, exhibited a preference for seeps. Other taxa, such as the amphipods Rhepoxynius abronius and R, daboius, avoided seeps. Species richness of shelf macrofauna, evaluated by rarefaction and diversity indices (H' and J'), generally did not differ in seep and non-seep sediments. Similarly, stable isotopic composition (delta C-13, delta N-15) Of active seep and non-seep macrofauna did not differ at the 3 shelf sites. Stable isotopic analyses of calcareous material confirmed the presence of methane-influenced pore waters at the slope study site. At one slope clam bed, macrofaunal delta C-13 signatures were lower and delta N-15 values were higher than at another clam bed, inactive slope sediments and shelf sites. However, only 1 of 14 macrofaunal taxa (a dorvilleid polychaete) exhibited isotopic evidence of chemosynthetic nutritional sources. At these sites, seep influence on the ecology of continental margin infauna appears spatially limited and relatively subtle. At their current level of activity, the northern California slope and shelf seeps appear to function as ephemeral, small-scale disturbances that are not sufficiently persistent to allow chemosynthesis-based trophic specialization by most infauna. Rather, we suggest that many of the infauna inhabiting these seep sediments are shelf and slope species preadapted to organic-rich, reducing environments.

展开

DOI:

10.3354/meps208021

被引量:

176

年份:

2000

通过文献互助平台发起求助,成功后即可免费获取论文全文。

相似文献

参考文献

引证文献

来源期刊

引用走势

2010
被引量:26

站内活动

辅助模式

0

引用

文献可以批量引用啦~
欢迎点我试用!

关于我们

百度学术集成海量学术资源,融合人工智能、深度学习、大数据分析等技术,为科研工作者提供全面快捷的学术服务。在这里我们保持学习的态度,不忘初心,砥砺前行。
了解更多>>

友情链接

百度云百度翻译

联系我们

合作与服务

期刊合作 图书馆合作 下载产品手册

©2025 Baidu 百度学术声明 使用百度前必读

引用