Coupled grouping and matching for sign and gesture recognition

阅读量:

88

作者:

R YangS Sarkar

展开

摘要:

Matching an image sequence to a model is a core problem in gesture or sign recognition. In this paper, we consider such a matching problem, without requiring a perfect segmentation of the scene. Instead of requiring that low- and mid-level processes produce near-perfect segmentation, we take into account that such processes can only produce uncertain information and use an intermediate grouping module to generate multiple candidates. From the set of low-level image primitives, such as constant color region patches found in each image, a ranked set of salient, overlapping, groups of these primitives are formed, based on low-level cues such as region shape, proximity, or color. These groups corresponds to underlying object parts of interest, such as the hands. The sequence of these frame-wise group hypotheses are then matched to a model by casting it into a minimization problem. We show the coupling of these hypotheses with both non-statistical matching (match to sample-based modeling of signs) and statistical matching (match to HMM models) are possible. Our algorithm not only produces a matching score, but also selects the best group in each image frame, i.e. recognition and final segmentation of the scene are coupled. In addition, there is no need for tracking of features across sequences, which is known to be a hard task. We demonstrate our method using data from sign language recognition and gesture recognition, we compare our results with the ground truth hand groups, and achieved less than 5% performance loss for both two models. We also tested our algorithm on a sports video dataset that has moving background.

展开

DOI:

10.1016/j.cviu.2008.09.005

被引量:

57

年份:

2009

通过文献互助平台发起求助,成功后即可免费获取论文全文。

我们已与文献出版商建立了直接购买合作。

你可以通过身份认证进行实名认证,认证成功后本次下载的费用将由您所在的图书馆支付

您可以直接购买此文献,1~5分钟即可下载全文,部分资源由于网络原因可能需要更长时间,请您耐心等待哦~

身份认证 全文购买

相似文献

参考文献

引证文献

来源期刊

研究点推荐

引用走势

2010
被引量:12

辅助模式

0

引用

文献可以批量引用啦~
欢迎点我试用!

关于我们

百度学术集成海量学术资源,融合人工智能、深度学习、大数据分析等技术,为科研工作者提供全面快捷的学术服务。在这里我们保持学习的态度,不忘初心,砥砺前行。
了解更多>>

友情链接

百度云百度翻译

联系我们

合作与服务

期刊合作 图书馆合作 下载产品手册

©2025 Baidu 百度学术声明 使用百度前必读

引用