Seifert R & Wenzel-Seifert K. Constitutive activity of G-protein-coupled receptors: Cause of disease and common property of wild-type receptors. Naunyn Schmiedebergs Arch Pharmacol366: 381-416

阅读量:

42

作者:

R SeifertK Wenzel-Seifert

展开

摘要:

The aim of this review is to provide a systematic overview on constitutively active G-protein-coupled receptors (GPCRs), a rapidly evolving area in signal transduction research. We will discuss mechanisms, pharmacological tools and methodological approaches to analyze constitutive activity. The two-state model defines constitutive activity as the ability of a GPCR to undergo agonist-independent isomerization from an inactive (R) state to an active (R*) state. While the two-state model explains basic concepts of constitutive GPCR activity and inverse agonism, there is increasing evidence for multiple active GPCR conformations with distinct biological activities. As a result of constitutive GPCR activity, basal G-protein activity increases. Until now, constitutive activity has been observed for more than 60 wild-type GPCRs from the families 1-3 and from different species including humans and commonly used laboratory animal species. Additionally, several naturally occurring and disease-causing GPCR mutants with increased constitutive activity relative to wild-type GPCRs have been identified. Alternative splicing, RNA editing, polymorphisms within a given species, species variants and coupling to specific G-proteins all modulate the constitutive activity of GPCRs, providing multiple regulatory switches to fine-tune basal cellular activities. The most important pharmacological tools to analyze constitutive activity are inverse agonists and Na(+) that stabilize the R state, and pertussis toxin that uncouples GPCRs from G(i)/G(o)-proteins. Constitutive activity is observed at low and high GPCR expression levels, in native systems and in recombinant systems, and has been reported for GPCRs coupled to G(s)-, G(i)- and G(q)-proteins. Constitutive activity of neurotransmitter GPCRs may provide a tonic support for basal neuronal activity. For the majority of GPCRs known to be constitutively active, inverse agonists have already been identified. Inverse agonists may be useful in the treatment of neuropsychiatric and cardiovascular diseases and of diseases caused by constitutively active GPCR mutants.

展开

DOI:

10.1007/s00210-002-0588-0

被引量:

661

年份:

2002

通过文献互助平台发起求助,成功后即可免费获取论文全文。

相似文献

参考文献

引证文献

引用走势

2010
被引量:67

站内活动

辅助模式

0

引用

文献可以批量引用啦~
欢迎点我试用!

关于我们

百度学术集成海量学术资源,融合人工智能、深度学习、大数据分析等技术,为科研工作者提供全面快捷的学术服务。在这里我们保持学习的态度,不忘初心,砥砺前行。
了解更多>>

友情链接

百度云百度翻译

联系我们

合作与服务

期刊合作 图书馆合作 下载产品手册

©2025 Baidu 百度学术声明 使用百度前必读

引用