Uptake of safranine and other lipophilic cations into model membrane systems in response to a membrane potential

阅读量:

77

作者:

MB BallyMJ HopeCJAV EchteldPR Cullis

展开

摘要:

Lipophilic cations such as safranine and methyltriphenylphosphonium (MTPP +) are commonly employed to obtain measures of the membrane potential (Δψ) exhibited by energized biological membrane systems. These probes reflect the presence of Δψ (inside negative) by accumulating in the interior of the membrane bound system to achieve transmembrane distributions dictated by the Nernst equation. In this work, we characterize the ability of model membrane large unilamellar vesicle systems to accumulate safranine and other biologically active lipophilic cations in response to a K + diffusion potential (interior negative) across the large unilamellar vesicle membrane. We show that safranine, MTPP +, chlorpromazine and vinblastine can be rapidly accumulated to achieve interior lipophilic cation concentrations which may be more than two orders of magnitude higher than exterior concentrations. In the case of safranine, for example, incubation of 2 mM safranine with large unilamellar vesicle systems exhibiting a Δψ of 100 mV or more can lead to interior safranine concentrations in excess of 120 mM. This accumulation appears to proceed as an antiport K +-safranine exchange process, and the optical 'safranine response' observed can be attributed to precipitation of the dye inside the vesicle as the interior concentrations of safranine exceeds its solubility (96 mM). These observations are discussed in terms of the utility of probes such as safranine and MTPP + for determinations of Δψ as well as their implications for the equilibrium transbilayer distributions of biologically active lipophilic cations in vivo.

展开

DOI:

10.1016/0005-2736(85)90522-X

被引量:

1639

年份:

1985

通过文献互助平台发起求助,成功后即可免费获取论文全文。

我们已与文献出版商建立了直接购买合作。

你可以通过身份认证进行实名认证,认证成功后本次下载的费用将由您所在的图书馆支付

您可以直接购买此文献,1~5分钟即可下载全文,部分资源由于网络原因可能需要更长时间,请您耐心等待哦~

身份认证 全文购买

相似文献

参考文献

引证文献

来源期刊

引用走势

1994
被引量:119

辅助模式

0

引用

文献可以批量引用啦~
欢迎点我试用!

关于我们

百度学术集成海量学术资源,融合人工智能、深度学习、大数据分析等技术,为科研工作者提供全面快捷的学术服务。在这里我们保持学习的态度,不忘初心,砥砺前行。
了解更多>>

友情链接

百度云百度翻译

联系我们

合作与服务

期刊合作 图书馆合作 下载产品手册

©2025 Baidu 百度学术声明 使用百度前必读

引用