Fe-Ti deposits in Rogaland anorthosites (South Norway): geochemical characteristics and problems of interpretation

阅读量:

64

作者:

JC Duchesne

展开

摘要:

The Rogaland anorthosite province (S. Norway) contains numerous Fe-Ti oxide deposits, including the second most important ilmenite deposit in the world, the Tellnes deposit. The largest deposits are located in the na-Sira anorthosite massif. Others occur in the Hland-Helleren anorthosite massif, particularly along the deformed contact with the Egersund-Ogna massif, where they were previously considered formed by metasomatic processes. All deposits are now regarded as magmatic. The structure, mineralogy and geochemistry of 11 selected Fe-Ti deposits (Tellnes, Storgangen, Blfjell, Laksedal, Kydlandsvatn, Kagnuden, Rdemyr, Hestnes, Eigery, Svnes, and Jerneld) are discussed in light of recent models proposed for the origin of Rogaland anorthosites and related rocks. Massif-type anorthosites result from the diapiric uprise of a plagioclase crystal mush which crystallized along a large P – T interval. Except for Tellnes, which is related to a post-deformation dyke, the Fe-Ti deposits in anorthosite massifs have been deformed by this movement during and after their crystallization. The differentiation process of the jotunitic parental magma has built up cumulates in the Bjerkreim-Sokndal layered intrusion and liquids in the Tellnes dyke and other jotunitic intrusions. Ilmenite is a liquidus mineral immediately after plagioclase in the sequence of crystallization of these jotunites, its interstitial character in the rocks resulting from subsolidus recrystallization. Ilmenite can thus accumulate early in the evolution of jotunitic magmas. This feature, together with high contents in Cr, V, Mg and Ni, links the Jerneld, Blfjell and Svnes deposits (type1) to the early evolution of a jotunitic magma. In the Bjerkreim-Sokndal intrusion, magnetite can appear with ilmenite at the very beginning of the sequence of crystallization, but normally crystallizes after orthopyroxene and before clinopyroxene and apatite. The early appearance of magnetite is a characteristic feature of type 2 deposits (Tellnes, Storgangen, Kydlandsvatn, Rdemyr I) and suggests conditions similar to the early magnetite cumulates in the Bjerkreim-Sokndal intrusion. Evidence of layering further favours gravity-controlled sorting processes to concentrate the oxides. Large-scale subsolidus segregation of the oxides due to high-temperature deformation can further concentrate these minerals in silicate-absent meter-sized masses. Type 3 deposits (Rdemyr II, Kagnuden, Hestnes and Eigery) could be derived from the more evolved stages of differentiation, as indicated by high REE in apatite, high Ti and Zn in magnetite and relatively low Cr, V, Mg, Ni contents in both oxides. The Cr content in both oxide minerals is however higher than in the equivalent cumulates of the Bjerkreim-Sokndal intrusion. Although immiscibility as the mechanism of enrichment leading to silicate-absent oxide-apatite veins, as in Hestnes and Eigery, cannot be precluded, there is no direct evidence in the veins, nor has any structural or geochemical evidence of immiscibility ever been found in jotunite dykes and Fe-Ti-P-rich rocks. Further investigations on the influence of subsolidus exchange of elements between the two oxides are needed to improve the use of trace elements as differentiation indexes.

展开

DOI:

10.1007/s001260050195

被引量:

228

年份:

1999

通过文献互助平台发起求助,成功后即可免费获取论文全文。

我们已与文献出版商建立了直接购买合作。

你可以通过身份认证进行实名认证,认证成功后本次下载的费用将由您所在的图书馆支付

您可以直接购买此文献,1~5分钟即可下载全文,部分资源由于网络原因可能需要更长时间,请您耐心等待哦~

身份认证 全文购买

相似文献

参考文献

引证文献

来源期刊

研究点推荐

引用走势

2014
被引量:31

辅助模式

0

引用

文献可以批量引用啦~
欢迎点我试用!

关于我们

百度学术集成海量学术资源,融合人工智能、深度学习、大数据分析等技术,为科研工作者提供全面快捷的学术服务。在这里我们保持学习的态度,不忘初心,砥砺前行。
了解更多>>

友情链接

百度云百度翻译

联系我们

合作与服务

期刊合作 图书馆合作 下载产品手册

©2025 Baidu 百度学术声明 使用百度前必读

引用