Reconciling Late Ordovician (440 Ma) glaciation with very high (14X) CO 2 levels

阅读量:

48

作者:

TJ CrowleySK Baum

展开

摘要:

Geochemical data and models suggest a positive correlation between carbon dioxide changes and climate during the last 540 m.y. The most dramatic exception to this correlation involves the Late Ordovician (440 Ma) glaciation, which occurred at a time when CO2 levels may have been much greater than present (1416X?). Since decreased solar luminosity at that time only partially offset increased radiative forcing from CO2, some other factor needs to be considered to explain the glaciation. Prior work with energy balance models (EBMs) suggested that the unique geographic configuration of Gondwanaland at that time may have resulted in a small area of parameter space permitting permanent snow cover and higher CO2 levels. However, the crude snow and sea ice parameterizations in the EBM left these conclusions open to further scrutiny. Herein we present results from four experiments with the GENESIS general circulation model with CO2 levels 14X greater than present, solar luminosity reduced 4.5%, and an orbital configuration set for minimum summer insolation receipt. We examined the effects of different combinations of ocean heat transport and topography on high-latitude snow cover on Gondwanaland. For the no-elevation simulations we failed to simulate permanent summer snow cover. However, for the slightly elevated topography cases (300500 m), permanent summer snow cover occurs where geological data indicate the Ordovician ice sheet was present. These results support the hypothesis based on EBM studies. Further results indicate that although average runoff per grid point increases substantially for the Ordovician runs, the decreased land area results in global runoff 1030% less than present, with largest runoff reductions for flat topography. This response has implications for CO2-runoff/weathering parameterizations in geochemical models. Finally, simulated tropical sea surface temperatures (SSTs) are the same or only marginally warmer than present. This result is consistent with evidence from other warm time intervals indicating small changes in tropical SSTs during time of high CO2.

展开

DOI:

10.1029/94JD02521

被引量:

140

年份:

1995

通过文献互助平台发起求助,成功后即可免费获取论文全文。

我们已与文献出版商建立了直接购买合作。

你可以通过身份认证进行实名认证,认证成功后本次下载的费用将由您所在的图书馆支付

您可以直接购买此文献,1~5分钟即可下载全文,部分资源由于网络原因可能需要更长时间,请您耐心等待哦~

身份认证 全文购买

相似文献

参考文献

引证文献

辅助模式

0

引用

文献可以批量引用啦~
欢迎点我试用!

关于我们

百度学术集成海量学术资源,融合人工智能、深度学习、大数据分析等技术,为科研工作者提供全面快捷的学术服务。在这里我们保持学习的态度,不忘初心,砥砺前行。
了解更多>>

友情链接

百度云百度翻译

联系我们

合作与服务

期刊合作 图书馆合作 下载产品手册

©2025 Baidu 百度学术声明 使用百度前必读

引用