Refinement of the solution structure of the DNA hexamer 5'd(GCATGC)2: combined use of nuclear magnetic resonance and restrained molecular dynamics

阅读量:

53

作者:

MichaelNilgesG.MariusCloreAngelaM.GronenbornAxelT.

展开

摘要:

The solution structure of the self-complementary DNA hexamer 5'd(GCATGC)2 comprising the specific target site for the restriction endonuclease Sph 1 is investigated by using nuclear magnetic resonance spectroscopy and restrained molecular dynamics. All the nonexchangeable proton resonances are assigned sequentially, and from time-dependent nuclear Overhauser enhancement measurements a set of 158 approximate interproton distances are determined. These distances are used as the basis of a structure refinement using restrained molecular dynamics in which the interproton distances are incorporated into the total energy function of the system in the form of an effective potential term. Two restrained molecular dynamics simulations are carried out, starting from classical B- and A-DNA [atomic root mean square (rms) difference 3.3 A]. In both cases convergence is achieved to essentially identical structures satisfying the experimental restraints and having a root mean square difference of only 0.3 A between them, which is within the rms fluctuations of the atoms about their average positions. These results suggest that the restrained molecular dynamics structures represent reasonable approximations of the solution structure. The converged structures are of the B type and exhibit clear sequence-dependent variations of helical parameters, some of which follow Calladine's rules and can be attributed to the relief of interstrand purine-purine clash at adjacent base pairs. In addition, the converged restrained dynamics structures appear bent with a radius of curvature of approximately 20 A. This bending appears to be due almost entirely to the large positive base roll angles, particularly at the Pyr-Pur steps. Further, the global and local helix axes are not coincident, and the global helix axis represents a superhelical axis which the bent DNA, when extended into an "infinite" helix by repeated translation and rotation, wraps around.

展开

DOI:

10.1021/bi00386a068

被引量:

753

年份:

1987

通过文献互助平台发起求助,成功后即可免费获取论文全文。

相似文献

参考文献

引证文献

来源期刊

Biochemistry
1987年

引用走势

1994
被引量:59

站内活动

辅助模式

0

引用

文献可以批量引用啦~
欢迎点我试用!

关于我们

百度学术集成海量学术资源,融合人工智能、深度学习、大数据分析等技术,为科研工作者提供全面快捷的学术服务。在这里我们保持学习的态度,不忘初心,砥砺前行。
了解更多>>

友情链接

百度云百度翻译

联系我们

合作与服务

期刊合作 图书馆合作 下载产品手册

©2025 Baidu 百度学术声明 使用百度前必读

引用