A tree-structured covalent-bond-driven molecular memetic algorithm for optimization of ring-deficient molecules

阅读量:

34

摘要:

With enormous success in both science and engineering, the recent advances in evolutionary computation—particularly memetic computing—is gaining increasing attention in the molecular optimization community. In this paper, our interest is to introduce a memetic computational methodology for the discovery of low-energy stable conformations—also known as the stereoisomers—of covalently-bonded molecules, due to the abundance of such molecules in nature and their importance in biology and chemistry. To an optimization algorithm, maintaining the same set of bonds over the course of searching for the stereoisomers is a great challenge. Avoiding the steric effect, i.e. preventing atoms from overlapping or getting too close to each other, is another challenge of molecular optimization. Addressing these challenges, three novel nature-inspired tree-based evolutionary operators are first introduced in this paper. A tree-structured covalent-bond-driven molecular memetic algorithm (TCM-MA)—tailored specifically to deal with molecules that involve covalent bonding but contain no cyclic structures using the three novel evolutionary operators—is then proposed for the efficient search of the stereoisomers of ring-deficient covalently-bonded molecules. Through empirical study using the glutamic acid as a sample molecule of interest, it is witnessed that the proposed TCM-MA discovered as many as up to sixteen times more stereoisomers within as little as up to a five times tighter computational budget compared to two other state-of-the-art algorithms.

展开

DOI:

10.1016/j.camwa.2012.02.055

被引量:

21

年份:

2012

通过文献互助平台发起求助,成功后即可免费获取论文全文。

我们已与文献出版商建立了直接购买合作。

你可以通过身份认证进行实名认证,认证成功后本次下载的费用将由您所在的图书馆支付

您可以直接购买此文献,1~5分钟即可下载全文,部分资源由于网络原因可能需要更长时间,请您耐心等待哦~

身份认证 全文购买

相似文献

参考文献

引证文献

辅助模式

0

引用

文献可以批量引用啦~
欢迎点我试用!

关于我们

百度学术集成海量学术资源,融合人工智能、深度学习、大数据分析等技术,为科研工作者提供全面快捷的学术服务。在这里我们保持学习的态度,不忘初心,砥砺前行。
了解更多>>

友情链接

百度云百度翻译

联系我们

合作与服务

期刊合作 图书馆合作 下载产品手册

©2025 Baidu 百度学术声明 使用百度前必读

引用