T-Cell Activation by Antigen-Loaded pH-Sensitive Hydrogel Particles in Vivo: The Effect of Particle Size
摘要:
Polymeric carriers designed to encapsulate protein antigens have great potential for improving the efficacy of vaccines and immunotherapeutics for diseases such as cancer. We recently developed a carrier system based on polyacrylamide hydrogel microparticles cross-linked with acid-labile moieties. After being phagocytosed by antigen-presenting cells, the protein encapsulated within the carrier is released and processed for subsequent presentation of antigenic epitopes. To understand the impact of particle size on the activation of T-cells following uptake by antigen-presenting cells, particles with mean diameters of 3.5 microm and 35 nm encapsulating a model protein antigen were synthesized by emulsion and microemulsion based polymerization techniques, respectively. In vivo tests demonstrated that both sizes of particles were effective at stimulating the proliferation of T-cells and were capable of generating an antigen-specific cytotoxic T-cell response when coadministered with immunostimulatory DNA. Contrary to previous reports in the literature, our results suggest that there is no significant difference in the magnitude of T-cell activation for the two sizes of particles used in these experiments. This disparity in findings may be related to fundamental differences in material properties of the carriers used in these studies, such as the hydrophilicity of the polyacrylamide particles described here versus the hydrophobic nature of carriers investigated by other groups.
展开
关键词:
Animals Humans T-Lymphocytes Hydrogel Drug Carriers Vaccines Antigens Lymphocyte Activation Acrylic Resins Hydrogen-Ion Concentration
DOI:
10.1021/bc800338n
被引量:
年份:
2009
通过文献互助平台发起求助,成功后即可免费获取论文全文。
相似文献
参考文献
引证文献
辅助模式
引用
文献可以批量引用啦~
欢迎点我试用!