The Sizes of Peptides Generated from Protein by Mammalian 26 and 20 S Proteasomes: IMPLICATIONS FOR UNDERSTANDING THE DEGRADATIVE MECHANISM AND ANTIGEN PRESENTATION

阅读量:

71

作者:

AF KisselevTN AkopianKM WooAL Goldberg

展开

摘要:

Knowledge about the sizes of peptides generated by proteasomes during protein degradation is essential to fully understand their degradative mechanisms and the subsequent steps in protein turnover and generation of major histocompatibility complex class I antigenic peptides. We demonstrate here that 26 S and activated 20 S proteasomes from rabbit muscle degrade denatured, nonubiquitinated proteins in a highly processive fashion but generate different patterns of peptides (despite their containing identical proteolytic sites). With both enzymes, products range in length from 3 to 22 residues, and their abundance decreases with increasing length according to a log-normal distribution. Less than 15% of the products are the length of class I presented peptides (8 or 9 residues), and two-thirds are too short to function in antigen presentation. Surprisingly, these mammalian proteasomes, which contain two "chymotryptic," two "tryptic," and two "post-acidic" active sites, generate peptides with a similar size distribution as do archaeal 20 S proteasomes, which have 14 identical sites. Furthermore, inactivation of the "tryptic" sites altered the peptides produced without significantly affecting their size distribution. Therefore, this distribution is not determined by the number, specificity, or arrangement of the active sites (as proposed by the "molecular ruler" model); instead, we propose that proteolysis continues until products are small enough to diffuse out of the proteasomes.

展开

DOI:

10.1074/jbc.274.6.3363

被引量:

1364

年份:

1999

通过文献互助平台发起求助,成功后即可免费获取论文全文。

我们已与文献出版商建立了直接购买合作。

你可以通过身份认证进行实名认证,认证成功后本次下载的费用将由您所在的图书馆支付

您可以直接购买此文献,1~5分钟即可下载全文,部分资源由于网络原因可能需要更长时间,请您耐心等待哦~

身份认证 全文购买

相似文献

参考文献

引证文献

辅助模式

0

引用

文献可以批量引用啦~
欢迎点我试用!

关于我们

百度学术集成海量学术资源,融合人工智能、深度学习、大数据分析等技术,为科研工作者提供全面快捷的学术服务。在这里我们保持学习的态度,不忘初心,砥砺前行。
了解更多>>

友情链接

百度云百度翻译

联系我们

合作与服务

期刊合作 图书馆合作 下载产品手册

©2025 Baidu 百度学术声明 使用百度前必读

引用