A novel role for protein tyrosine phosphatase 1B as a positive regulator of neuroinflammation

来自 EBSCO

阅读量:

63

摘要:

Protein tyrosine phosphatase 1B (PTP1B) is a member of the non-transmembrane phosphotyrosine phosphatase family. Recently, PTP1B has been proposed to be a novel target of anti-cancer and anti-diabetic drugs. However, the role of PTP1B in the central nervous system is not clearly understood. Therefore, in this study, we sought to define PTP1B's role in brain inflammation. PTP1B messenger RNA (mRNA) and protein expression levels were examined in mouse brain and microglial cells after LPS treatment using RT-PCR and western blotting. Pharmacological inhibitors of PTP1B, NF-κB, and Src kinase were used to analyze these signal transduction pathways in microglia. A Griess reaction protocol was used to determine nitric oxide (NO) concentrations in primary microglia cultures and microglial cell lines. Proinflammatory cytokine production was measured by RT-PCR. Western blotting was used to assess Src phosphorylation levels. Immunostaining for Iba-1 was used to determine microglial activation in the mouse brain. PTP1B expression levels were significantly increased in the brain 24h after LPS injection, suggesting a functional role for PTP1B in brain inflammation. Microglial cells overexpressing PTP1B exhibited an enhanced production of NO and gene expression levels of TNF-α, iNOS, and IL-6 following LPS exposure, suggesting that PTP1B potentiates the microglial proinflammatory response. To confirm the role of PTP1B in neuroinflammation, we employed a highly potent and selective inhibitor of PTP1B (PTP1Bi). In LPS- or TNF-α-stimulated microglial cells, in vitro blockade of PTP1B activity using PTP1Bi markedly attenuated NO production. PTP1Bi also suppressed the expression levels of iNOS, COX-2, TNF-α, and IL-1β. PTP1B activated Src by dephosphorylating the Src protein at a negative regulatory site. PTP1B-mediated Src activation led to an enhanced proinflammatory response in the microglial cells. An intracerebroventricular injection of PTP1Bi significantly attenuated microglial activation in the hippocampus and cortex of LPS-injected mice compared to vehicle-injected mice. The gene expression levels of proinflammatory cytokines were also significantly suppressed in the brain by a PTP1Bi injection. Together, these data suggest that PTP1Bi has an anti-inflammatory effect in a mouse model of neuroinflammation. This study demonstrates that PTP1B is an important positive regulator of neuroinflammation and is a promising therapeutic target for neuroinflammatory and neurodegenerative diseases. The online version of this article (doi:10.1186/s12974-016-0545-3) contains supplementary material, which is available to authorized users.

展开

DOI:

10.1186/s12974-016-0545-3

被引量:

16

年份:

2016

通过文献互助平台发起求助,成功后即可免费获取论文全文。

相似文献

参考文献

引证文献

来源期刊

引用走势

2017
被引量:12

站内活动

辅助模式

0

引用

文献可以批量引用啦~
欢迎点我试用!

关于我们

百度学术集成海量学术资源,融合人工智能、深度学习、大数据分析等技术,为科研工作者提供全面快捷的学术服务。在这里我们保持学习的态度,不忘初心,砥砺前行。
了解更多>>

友情链接

百度云百度翻译

联系我们

合作与服务

期刊合作 图书馆合作 下载产品手册

©2025 Baidu 百度学术声明 使用百度前必读

引用