A type 1 diabetes-related protein from wheat (Triticum aestivum). cDNA clone of a wheat storage globulin, Glb1, linked to islet damage.

作者:

MacFarlaneJ A.

展开

摘要:

The development of autoimmune type 1 diabetes involves complex interactions among several genes and environmental agents. Human patients with type 1 diabetes show an unusually high frequency of wheat gluten-sensitive enteropathy; T-cell response to wheat proteins is increased in some patients, and high concentrations of wheat antibodies in blood have been reported. In both major models of spontaneous type 1 diabetes, the BioBreeding (BB) rat and non-obese diabetic mouse, at least half of the cases are diet-related. In studies of BB rats fed defined semipurified diets, wheat gluten was the most potent diabetes-inducing protein source. A major limitation in understanding how wheat or other dietary antigens affect type 1 diabetes has been the difficulty in identifying specific diabetes-related dietary proteins. To address this issue, we probed a wheat cDNA expression library with polyclonal IgG antibodies from diabetic BB rats. Three clones were identified, and the intensity of antibody binding to one of them, WP5212, was strongly associated with pancreatic islet inflammation and damage. The WP5212 putative protein has high amino acid sequence homology with a wheat storage globulin, Glb1. Serum IgG antibodies from diabetic rats and humans recognized low molecular mass (33-46 kDa) wheat proteins. Furthermore, antibodies to Glb1 protein were found in serum from diabetic patients but not in age-, sex-, and HLA-DQ-matched controls. This study raises the possibility that in some individuals, type 1 diabetes may be induced by wheat proteins. Also, it provides a first candidate wheat protein that is not only antigenic in diabetic rats and human patients but is also closely linked with the autoimmune attack in the pancreas.

展开

DOI:

10.1074/jbc.M210636200

被引量:

174

年份:

2003

通过文献互助平台发起求助,成功后即可免费获取论文全文。

相似文献

参考文献

引证文献

辅助模式

0

引用

文献可以批量引用啦~
欢迎点我试用!

关于我们

百度学术集成海量学术资源,融合人工智能、深度学习、大数据分析等技术,为科研工作者提供全面快捷的学术服务。在这里我们保持学习的态度,不忘初心,砥砺前行。
了解更多>>

友情链接

百度云百度翻译

联系我们

合作与服务

期刊合作 图书馆合作 下载产品手册

©2025 Baidu 百度学术声明 使用百度前必读

引用