Evaluation of Old and New Tests of Heterogeneity in Epidemiologic Meta-Analysis

来自 EBSCO

阅读量:

80

作者:

T BahiCS CarmenS Donna

展开

摘要:

The identification of heterogeneity in effects between studies is a key issue in meta-analyses of observational studies, since it is critical for determining whether it is appropriate to pool the individual results into one summary measure. The result of a hypothesis test is often used as the decision criterion. In this paper, the authors use a large simulation study patterned from the key features of five published epidemiologic meta-analyses to investigate the type I error and statistical power of five previously proposed asymptotic homogeneity tests, a parametric bootstrap version of each of the tests, and tau2-bootstrap, a test proposed by the authors. The results show that the asymptotic DerSimonian and Laird Q statistic and the bootstrap versions of the other tests give the correct type I error under the null hypothesis but that all of the tests considered have low statistical power, especially when the number of studies included in the meta-analysis is small (<20). From the point of view of validity, power, and computational ease, the Q statistic is clearly the best choice. The authors found that the performance of all of the tests considered did not depend appreciably upon the value of the pooled odds ratio, both for size and for power. Because tests for heterogeneity will often be underpowered, random effects models can be used routinely, and heterogeneity can be quantified by means of R(I), the proportion of the total variance of the pooled effect measure due to between-study variance, and CV(B), the between-study coefficient of variation.

展开

DOI:

10.1093/oxfordjournals.aje.a009981

被引量:

2997

相似文献

参考文献

引证文献

来源期刊

引用走势

2015
被引量:378

站内活动

辅助模式

0

引用

文献可以批量引用啦~
欢迎点我试用!

关于我们

百度学术集成海量学术资源,融合人工智能、深度学习、大数据分析等技术,为科研工作者提供全面快捷的学术服务。在这里我们保持学习的态度,不忘初心,砥砺前行。
了解更多>>

友情链接

百度云百度翻译

联系我们

合作与服务

期刊合作 图书馆合作 下载产品手册

©2025 Baidu 百度学术声明 使用百度前必读

引用