Substrate requirements of bacterial phosphatidylinositol-specific phospholipase C
摘要:
A series of symmetric short-chain phosphatidylinositols (PI), including dihexanoyl-PI, diheptanoyl-PI (racemic as well as D and L forms), and 2-methoxy inositol-substituted diheptanoyl-PI, have been synthesized, characterized, and used to investigate key mechanistic questions about phosphatidylinositol-specific phospholipase C (PI-PLC) from Bacillus thuringiensis. Key results include the following: (i) bacterial PI-PLC exhibits a 5-6-fold "interfacial activation" when its substrate is present in an interface as opposed to existing as a monomer in solution (in fact, the similarity to the activation observed with nonspecific PLC enzymes suggests a similarity in activation mechanisms); (ii) the 2-OH must be free since the enzyme cannot hydrolyze diheptanoyl-2-O-methyl-PI (this is most consistent with the formation of inositol cyclic 1,2-phosphate as a necessary step in catalysis); (iii) the inositol ring must have the D stereochemistry (the L-inositol attached to the lipid moiety is neither a substrate nor an inhibitor); and (iv) the presence of noninhibitory L-PI with the D-PI substrate relieves the diacylglycerol product inhibition detected at approximately 30% hydrolysis.
展开
关键词:
Bacillus thuringiensis Phosphoric Diester Hydrolases Phosphatidylinositol Diacylglycerol-Lyase Phosphatidylinositols Magnetic Resonance Spectroscopy Substrate Specificity Hydrolysis Phosphoinositide Phospholipase C Micelles Catalysis
DOI:
10.1021/bi00085a014
被引量:
年份:
1993
通过文献互助平台发起求助,成功后即可免费获取论文全文。
相似文献
参考文献
引证文献
辅助模式
引用
文献可以批量引用啦~
欢迎点我试用!