Mutations in the gamma(2) subunit of AMP-activated protein kinase cause familial hypertrophic cardiomyopathy: evidence for the central role of energy compromise in disease pathogenesis.

来自 EBSCO

阅读量:

59

作者:

BlairE.

展开

摘要:

Familial hypertrophic cardiomyopathy (HCM) has been widely studied as a genetic model of cardiac hypertrophy and sudden cardiac death. HCM has been defined as a disease of the cardiac sarcomere, but mutations in the known contractile protein disease genes are not found in up to one-third of cases. Further, no consistent changes in contractile properties are shared by these mutant proteins, implying that an abnormality of force generation may not be the underlying mechanism of disease. Instead, all of the sarcomeric mutations appear to result in inefficient use of ATP, suggesting that an inability to maintain normal ATP levels may be the central abnormality. To test this hypothesis we have examined candidate genes involved in energy homeostasis in the heart. We now describe mutations in PRKAG2, encoding the gamma(2) subunit of AMP-activated protein kinase (AMPK), in two families with severe HCM and aberrant conduction from atria to ventricles in some affected individuals (pre-excitation or Wolff-Parkinson-White syndrome). The mutations, one missense and one in-frame single codon insertion, occur in highly conserved regions. Because AMPK provides a central sensing mechanism that protects cells from exhaustion of ATP supplies, we propose that these data substantiate energy compromise as a unifying pathogenic mechanism in all forms of HCM. This conclusion should radically redirect thinking about this disorder and also, by establishing energy depletion as a cause of myocardial dysfunction, should be relevant to the acquired forms of heart muscle disease that HCM models.

展开

DOI:

10.1093/hmg/10.11.1215

被引量:

1239

年份:

2001

相似文献

参考文献

引证文献

辅助模式

0

引用

文献可以批量引用啦~
欢迎点我试用!

关于我们

百度学术集成海量学术资源,融合人工智能、深度学习、大数据分析等技术,为科研工作者提供全面快捷的学术服务。在这里我们保持学习的态度,不忘初心,砥砺前行。
了解更多>>

友情链接

百度云百度翻译

联系我们

合作与服务

期刊合作 图书馆合作 下载产品手册

©2025 Baidu 百度学术声明 使用百度前必读

引用