Synthesis and Stereodynamics of Highly Constrained 1,8-Bis(2,2‘-dialkyl-4,4‘-diquinolyl)naphthalenes

来自 ACS

阅读量:

30

作者:

Gilbert E. TumambacChristian Wolf

展开

摘要:

The syn and anti isomers of axially chiral 1,8-diquinolylnaphthalenes have been synthesized via Pd-catalyzed Stille coupling of 1,8-dibromonaphthalene and 2-alkyl-4-trimethylstannylquinolines. Optimization of the cross-coupling reaction allowed the preparation of highly constrained 1,8-bis(2,2‘-dimethyl-4,4‘-diquinolyl)naphthalene, 2, and 1,8-bis(2,2‘-diisopropyl-4,4‘-diquinolyl)naphthalene, 3, in 42% and 41% yield, respectively. Employing Pd(PPh3)4 and CuO as the cocatalysts in the coupling reaction of 1,8-dibromonaphthalene and 2-alkyl-4-trimethylstannylquinolines proved to be superior over other catalysts such as PdCl2(dppf), Pd2(dba)3/P(t-Bu)3, and POPd. The C2-symmetric anti isomers of 2 and 3 were found to be more stable than the corresponding meso syn isomer. The ratio of the two enantiomeric anti conformers to the syn conformer was determined as 7.9:1 for 2 and 8.6:1 for 3 by NMR and HPLC analysis. The atropisomers of 2 and 3 were found to be stable to rotation about the chiral axis at room temperature and all three stereoisomers of 2 were isolated by semipreparative HPLC on a Chiralpak AD column. The diastereoisomers of 3 were separated via preferential crystallization of the anti isomers from diethyl ether. Slow syn/anti interconversion was observed for both atropisomers at enhanced temperature, and the diastereomerization and enantiomerization processes were monitored by NMR and HPLC. The Gibbs activation energy, ΔG, for the isomerization of 2 was determined as 116.0 (112.1) kJ/mol for the conversion of the anti (syn) to the syn (anti) isomer at 71.0 °C. The rotational energy barrier of 3 was determined as 115.2 (111.1) kJ/mol for the conversion of the anti (syn) to the syn (anti) isomer at 66.2 °C.

展开

DOI:

10.1021/jo035547l

被引量:

69

年份:

2004

通过文献互助平台发起求助,成功后即可免费获取论文全文。

相似文献

参考文献

引证文献

引用走势

2010
被引量:15

辅助模式

0

引用

文献可以批量引用啦~
欢迎点我试用!

引用