Acid-Catalyzed Dehydration of Fructose into 5-Hydroxymethylfurfural by Cellulose-Derived Amorphous Carbon
摘要:
Carbonaceous solid (CS) catalysts with SO3H, COOH, and phenolic OH groups were prepared by incomplete hydrothermal carbonization of cellulose followed by either sulfonation with H2SO4 to give carbonaceous sulfonated solid (CSS) material or by both chemical activation with KOH and sulfonation to give activated carbonaceous sulfonated solid (a-CSS) material. The obtained carbon products (CS, CSS, and a-CSS) were amorphous; the CSS material had a small surface area (2 g−1) and a high SO3H group concentration (0.953 mmol g−1), whereas the a-CSS material had a large surface area (514 m2 g−1) and a low SO3H group concentration (0.172 mmol g−1). The prepared materials were evaluated as catalysts for the dehydration of fructose to 5-hydroxymethylfurfural (5-HMF) in the ionic liquid 1-butyl-3-methylimidazolium chloride ([BMIM][Cl]). Remarkably high 5-HMF yields (83 %) could be obtained efficiently (80 °C and 10 min reaction time). CSS and a-CSS catalysts had similar catalytic activities and efficiencies for the conversion of fructose to 5-HMF in [BMIM][Cl]; this could be explained by the trade-off between SO3H group concentration (high for CSS) and surface area (high for a-CSS). The cellulose-derived catalysts and ionic liquid exhibited constant activity for five successive recycles, and thus, the methods developed provide a renewable strategy for biomass conversion.
展开
DOI:
10.1002/cssc.201200363
被引量:
年份:
2012
相似文献
参考文献
引证文献
辅助模式
引用
文献可以批量引用啦~
欢迎点我试用!