The potent anti-HIV protein cyanovirin-N contains two novel carbohydrate binding sites that selectively bind to Man(8) D1D3 and Man(9) with nanomolar affinity: implications for binding to the HIV envelope protein gp120.

阅读量:

39

作者:

CA BewleyS Otero-Quintero

展开

摘要:

Cyanovirin-N (CVN) is a monomeric 11 kDa cyanobacterial protein that potently inactivates diverse strains of human immunodeficiency virus (HIV) at the level of cell fusion by virtue of high affinity interactions with the surface envelope glycoprotein gp120. Several lines of evidence have suggested that CVN-gp120 interactions are in part mediated by N-linked complex carbohydrates present on gp120, but experimental evidence has been lacking. To this end we screened a comprehensive panel of carbohydrates which represent structurally the N-linked carbohydrates found on gp120 for their ability to inhibit the fusion-blocking activity of CVN in a quantitative HIV-1 envelope-mediated cell fusion assay. Our results show that CVN specifically recognizes with nanomolar affinity Man(9)GlcNAc(2) and the D1D3 isomer of Man(8)GlcNAc(2). Nonlinear least squares best fitting of titration data generated using the cell fusion assay show that CVN binds to gp120 with an equilibrium association constant (K(a)) of 2.4 (+/- 0.1) x 10(7) M(-1) and an apparent stoichiometry of 2 equiv of CVN per gp120, Man(8)GlcNAc(2) D1D3 acts as a divalent ligand (2 CVN:1 Man(8)) with a K(a) of 5.4 (+/- 0.5) x 10(7) M(-1), and Man(9)GlcNAc(2) functions as a trivalent ligand (3 CVN:1 Man(9)) with a K(a) of 1.3 (+/- 0.3) x 10(8) M(-1). Isothermal titration calorimetry experiments of CVN binding to Man(9)GlcNAc(2) at micromolar concentrations confirmed the nanomolar affinity (K(a) = 1.5 (+/- 0.9) x 10(8) M(-1)), and the fitted data indicated a stoichiometry equal to approximately one (1 Man(9):1 CVN). The 1:1 stoichiometry at micromolar concentrations suggested that CVN has not only a high affinity binding site-relevant to the studies at nM concentrations-but a lower affinity site as well that facilitates cross-linking of CVN-oligomannose at micromolar concentrations or higher. The specificity of CVN for Man(8) D1D3 and Man(9) over the D1D2 isomer of Man(8) indicated that the minimum structure required for high affinity binding comprises Manalpha1 --> 2Manalpha. By following the (1)H-(15)N correlation spectrum of (15)N-labeled CVN upon titration with this disaccharide, we unambiguously demonstrate that CVN recognizes and binds to the disaccharide Manalpha1 --> 2Manalpha via two distinct binding sites of differing affinities located on opposite ends of the protein. The high affinity site has a K(a) of 7.2 (+/- 4) x 10(6) M(-1) and the low affinity site a K(a) of 6.8 (+/- 4) x 10(5) M(-1) as determined by isothermal titration calorimetry. Mapped surfaces of the carbohydrate binding sites are presented, and implications for binding to gp120 are discussed.

展开

DOI:

10.1021/ja004040e

被引量:

253

年份:

2001

通过文献互助平台发起求助,成功后即可免费获取论文全文。

相似文献

参考文献

引证文献

引用走势

2005
被引量:30

站内活动

辅助模式

0

引用

文献可以批量引用啦~
欢迎点我试用!

关于我们

百度学术集成海量学术资源,融合人工智能、深度学习、大数据分析等技术,为科研工作者提供全面快捷的学术服务。在这里我们保持学习的态度,不忘初心,砥砺前行。
了解更多>>

友情链接

百度云百度翻译

联系我们

合作与服务

期刊合作 图书馆合作 下载产品手册

©2025 Baidu 百度学术声明 使用百度前必读

引用