Full Wave Single and Double Scatter from Rough Surfaces
摘要:
Using the full wave approach, the single and double scattered electromagnetic fields from deterministic one-dimensional rough surfaces are computed. Full wave expressions for the single and double scattered far fields are given in terms of multidimensional integrals. These integrals are evaluated using the Cornell National Supercomputer IBM/3090. Applying the steepest descent approximation to the double scattered field expressions, the dimensions of the integrals are reduced from four to two in the case of one-dimensional rough surfaces. It is shown that double scatter in the backward direction is significant for near normal incidence when the rough surface is highly conducting and its mean square slope is very large. Even for one-dimensional rough surfaces, depolarization occurs when the reference plane of incidence is not parallel to the local planes of incidence and scatter. A geometrical optics approximation is used to interpret the results of the double scattered fields for normal incidence near backscatter. The physical interpretation of the results could shed light on the observed fluctuations in the enhanced backscatter phenomenon as the angle of incidence increases from near normal to grazing angles. The results show that double scatter strongly depends upon the mean square slope, the conductivity of the rough surface and the angle of incidence.
展开
关键词:
Theoretical or Mathematical/ electromagnetic wave polarisation electromagnetic wave scattering/ double scattered electromagnetic fields single scattered electromagnetic fields deterministic one-dimensional rough surfaces multidimensional integrals steepest descent approximation depolarization geometrical optics approximation enhanced backscatter phenomenon/ A4110H Electromagnetic waves: theory
DOI:
10.1006/jcph.1994.1204
被引量:
年份:
1994
通过文献互助平台发起求助,成功后即可免费获取论文全文。
相似文献
参考文献
引证文献
辅助模式
引用
文献可以批量引用啦~
欢迎点我试用!