Preparation and adsorption properties of a novel superabsorbent based on multiwalled carbon nanotubes–xylan composite and poly(methacrylic acid) for methylene blue from aqueous solution

来自 EBSCO

阅读量:

73

作者:

Z JingG ZhangSun, Xiao-FengX ShiW Sun

展开

摘要:

A novel superabsorbent was prepared by the copolymerization reaction between multiwalled carbon nanotubes (MWCNTs)–xylan composite and poly(methacrylic acid) (PMAA) in the presence of N,N′-methylenebisacrylamide as cross-linker and the redox initiation system (NH)4S2O8-anhydrous Na2SO3 as initiator for adsorbing methylene blue (MB) from aqueous solution. First, covalent modification of MWCNTs with a natural polymer xylan was achieved by the nucleophilic substitution reaction. The obtained xylan modified MWCNTs–xylan composite was characterized by transmission electron microscope, Fourier transform infrared spectroscopy, X-ray photoelectron spectrometer, and thermal gravimetric analysis. The results indicated that the hydroxyl groups of xylan participated in the formation of MWCNTs–xylan composite, and MWCNTs–xylan composite contained 32% xylan and about four molecule chains of xylan were grafted onto 5,000 carbon atoms of MWCNTs sidewalls. Subsequently, a novel superabsorbent based on MWCNTs–xylan composite and PMAA was prepared and characterized by Fourier transform infrared spectroscopy, scanning electron microscope, and swelling test. The results proved that superabsorbent was successfully prepared by copolymerization reaction and found that the superabsorbent evidently presented three-dimensional network structure. Swelling process of superabsorbent complied with the Fick's law. Adsorption property of superabsorbent for MB was also systematically studied by investigating these parameters, such as superabsorbent dosage, initial MB concentration, contact time, ion strength, and pH. The superabsorbent presented a higher adsorption capacity and removal rate for MB. The adsorption data were fitted by Langmuir, Freundlich isotherm models, and four adsorption kinetic models. Freundlich isotherm model better fitted the equilibrium data than Langmuir, and adsorption kinetics could be well described by pseudo-second-order kinetic and intraparticle diffusion. These results indicated that the superabsorbent can be used as an efficient absorbent for removal of MB from aqueous solution. POLYM. COMPOS., 35:1516–1528, 2014. 2013 Society of Plastics Engineers

展开

DOI:

10.1002/pc.22805

被引量:

5

年份:

2014

通过文献互助平台发起求助,成功后即可免费获取论文全文。

我们已与文献出版商建立了直接购买合作。

你可以通过身份认证进行实名认证,认证成功后本次下载的费用将由您所在的图书馆支付

您可以直接购买此文献,1~5分钟即可下载全文,部分资源由于网络原因可能需要更长时间,请您耐心等待哦~

身份认证 全文购买

相似文献

参考文献

引证文献

来源期刊

引用走势

2014
被引量:3

站内活动

辅助模式

0

引用

文献可以批量引用啦~
欢迎点我试用!

关于我们

百度学术集成海量学术资源,融合人工智能、深度学习、大数据分析等技术,为科研工作者提供全面快捷的学术服务。在这里我们保持学习的态度,不忘初心,砥砺前行。
了解更多>>

友情链接

百度云百度翻译

联系我们

合作与服务

期刊合作 图书馆合作 下载产品手册

©2025 Baidu 百度学术声明 使用百度前必读

引用