Insulin Action Is Facilitated by Insulin-Stimulated Reactive Oxygen Species With Multiple Potential Signaling Targets.

来自 EBSCO

阅读量:

35

作者:

GoldsteinBarryJ.KalyankarMahadevWuXiangdong

展开

摘要:

Propelled by the identification of a small family of NADPH oxidase (Nox) enzyme homologs that produce superoxide in response to cellular stimulation with various growth factors, renewed interest has been generated in characterizing the signaling effects of reactive oxygen species (ROS) in relation to insulin action. Two key observations made >30 years ago--that oxidants can facilitate or mimic insulin action and that H<sup>2</sup>O<sup>2</sup> is generated in response to insulin stimulation of its target cells--have led to the hypothesis that ROS may serve as second messengers in the insulin action cascade. Specific molecular targets of insulin-induced ROS include enzymes whose signaling activity is modified via oxidative biochemical reactions, leading to enhanced insulin signal transduction. These positive responses to cellular ROS may seem "paradoxical" because chronic exposure to relatively high levels of ROS have also been associated with functional β-cell impairment and the chronic complications of diabetes. The best-characterized molecular targets of ROS are the protein-tyrosine phosphatases (PTPs) because these important signaling enzymes require a reduced form of a critical cysteine residue for catalytic activity. PTPs normally serve as negative regulators of insulin action via the dephosphorylation of the insulin receptor and its tyrosinephosphorylated cellular substrates. However, ROS can rapidly oxidize the catalytic cysteine of target PTPs, effectively blocking their enzyme activity and reversing their inhibitory effect on insulin signaling. Among the cloned Nox homologs, we have recently provided evidence that Nox4 may mediate the insulin-stimulated generation of cellular ROS and is coupled to insulin action via the oxidative inhibition of PTP1B, a PTP known to be a major regulator of the insulin signaling cascade. Further characterization of the molecular components of this novel signaling cascade, including the mechanism of ROS generated by insulin and the identification of various oxidation-sensitive signaling targets in insulin-sensitive cells, may provide a novel means of facilitating insulin action in states of insulin resistance. Diabetes 54:311-321, 2005

展开

被引量:

465

年份:

2005

通过文献互助平台发起求助,成功后即可免费获取论文全文。

相似文献

参考文献

引证文献

来源期刊

引用走势

2013
被引量:64

辅助模式

0

引用

文献可以批量引用啦~
欢迎点我试用!

关于我们

百度学术集成海量学术资源,融合人工智能、深度学习、大数据分析等技术,为科研工作者提供全面快捷的学术服务。在这里我们保持学习的态度,不忘初心,砥砺前行。
了解更多>>

友情链接

百度云百度翻译

联系我们

合作与服务

期刊合作 图书馆合作 下载产品手册

©2025 Baidu 百度学术声明 使用百度前必读

引用