Vasomotion in critically perfused muscle protects adjacent tissues from capillary perfusion failure.

阅读量:

24

作者:

M RückerO StrobelB VollmarF RoeskenMD Menger

展开

摘要:

We analyzed the incidence and interaction of arteriolar vasomotion and capillary flow motion during critical perfusion conditions in neighboring peripheral tissues using intravital fluorescence microscopy. The gracilis and semitendinosus muscles and adjacent periosteum, subcutis, and skin of the left hindlimb of Sprague-Dawley rats were isolated at the femoral vessels. Critical perfusion conditions, achieved by stepwise reduction of femoral artery blood flow, induced capillary flow motion in muscle, but not in the periosteum, subcutis, and skin. Strikingly, blood flow within individual capillaries was decreased (P < 0.05) in muscle but was not affected in the periosteum, subcutis, and skin. However, despite the flow motion-induced reduction of muscle capillary blood flow during the critical perfusion conditions, functional capillary density remained preserved in all tissues analyzed, including the skeletal muscle. Abrogation of vasomotion in the muscle arterioles by the calcium channel blocker felodipine resulted in a redistribution of blood flow within individual capillaries from cutaneous, subcutaneous, and periosteal tissues toward skeletal muscle. As a consequence, shutdown of perfusion of individual capillaries was observed that resulted in a significant reduction (P < 0.05) of capillary density not only in the neighboring tissues but also in the muscle itself. We conclude that during critical perfusion conditions, vasomotion and flow motion in skeletal muscle preserve nutritive perfusion (functional capillary density) not only in the muscle itself but also in the neighboring tissues, which are not capable of developing this protective regulatory mechanism by themselves.

展开

DOI:

10.1111/j.1469-7793.2000.00193.x

被引量:

173

年份:

2000

通过文献互助平台发起求助,成功后即可免费获取论文全文。

相似文献

参考文献

引证文献

辅助模式

0

引用

文献可以批量引用啦~
欢迎点我试用!

关于我们

百度学术集成海量学术资源,融合人工智能、深度学习、大数据分析等技术,为科研工作者提供全面快捷的学术服务。在这里我们保持学习的态度,不忘初心,砥砺前行。
了解更多>>

友情链接

百度云百度翻译

联系我们

合作与服务

期刊合作 图书馆合作 下载产品手册

©2025 Baidu 百度学术声明 使用百度前必读

引用