Network Analysis of the Focal Adhesion to Invadopodia Transition Identifies a PI3K-PKCα Invasive Signaling Axis

来自 EBSCO

阅读量:

46

摘要:

In cancer, deregulated signaling can produce an invasive cellular phenotype. We modeled the invasive transition as a theoretical switch between two cytoskeletal structures: focal adhesions and extracellular matrix-degrading invadopodia. We constructed molecular interaction networks of each structure and identified upstream regulatory hubs through computational analyses. We compared these regulatory hubs to the status of signaling components from head and neck carcinomas, which led us to analyze phosphatidylinositol 3-kinase (PI3K) and protein kinase C alpha (PKC alpha). Consistent with previous studies, PI3K activity promoted both the formation and the activity of invadopodia. We found that PI3K induction of invadopodia was increased by overexpression of SH2 (Src homology 2 domain) domain-containing inositol 5'-phosphatase 2 (SHIP2), which converts the phosphatidylinositol 3,4,5-trisphosphate [PI(3,4,5)P-3] that is produced by PI3K activity to phosphatidylinositol 3,4-bisphosphate [PI(3,4)P-2], which is believed to promote invadopodia formation. Knockdown of PKC alpha had divergent effects on invadopodia formation, depending on the status of PI3K. Loss of PKC alpha inhibited invadopodia formation in cells with wild-type PI3K pathway status. Conversely, in cells with constitutively active PI3K (through activating PI3K mutants or lacking the endogenous opposing enzyme PTEN), PKC alpha knockdown increased invadopodia formation. Mechanistic studies revealed a negative feedback loop from PKC alpha that dampened PI3K activity and invasive behavior in cells with genetic hyperactivation of the PI3K pathway. These studies demonstrated the potential of network modeling as a discovery tool and identified PI3K and PKCa as interacting regulators of invasive behavior.

展开

DOI:

10.1126/scisignal.2002964

被引量:

95

年份:

2012

通过文献互助平台发起求助,成功后即可免费获取论文全文。

我们已与文献出版商建立了直接购买合作。

你可以通过身份认证进行实名认证,认证成功后本次下载的费用将由您所在的图书馆支付

您可以直接购买此文献,1~5分钟即可下载全文,部分资源由于网络原因可能需要更长时间,请您耐心等待哦~

身份认证 全文购买

相似文献

参考文献

引证文献

辅助模式

0

引用

文献可以批量引用啦~
欢迎点我试用!

关于我们

百度学术集成海量学术资源,融合人工智能、深度学习、大数据分析等技术,为科研工作者提供全面快捷的学术服务。在这里我们保持学习的态度,不忘初心,砥砺前行。
了解更多>>

友情链接

百度云百度翻译

联系我们

合作与服务

期刊合作 图书馆合作 下载产品手册

©2025 Baidu 百度学术声明 使用百度前必读

引用