Differences in the properties and enzymatic specificities of the two active sites of angiotensin I-converting enzyme (kininase II). Studies with bradykinin and other natural peptides.

阅读量:

33

作者:

E JaspardL WeiF Alhenc-Gelas

展开

摘要:

Angiotensin I-converting enzyme (ACE, E.C.3.4.15.1) has been recently shown to contain two very similar domains, each of which bears a functional active site hydrolyzing Hip-His-Leu or angiotensin I (AI). The substrate specificity of the two active sites of ACE was compared using wild-type recombinant ACE and mutants, where one active site is suppressed by deletion or inactivated by mutations of 2 histidines coordinating an essential zinc atom. Both active sites converted bradykinin (BK) to BK1-7 and BK1-5 with similar kinetics and with Kappm at least 30 times lower and kcat/kappm 10 times higher than for AI. The carboxyl-terminal active site, but not the amino-terminal site, was activated by chloride; however, chloride activation was minimal compared with AI. Both domains also hydrolyzed substance P and cleaved a carboxyl-terminal protected dipeptide and tripeptide. The carboxyl-terminal active site was more readily activated by chloride and hydrolyzed substance P faster. Luteinizing-hormone releasing hormone was hydrolyzed by both active sites, but hydrolysis by the amino-terminal active site was faster. It performed the endoproteolytic amino-terminal cleavage of this peptide at least 30 times faster than the carboxyl-terminal active site. Both active sites cleaved a carboxyl-terminal tripeptide from luteinizing hormone-releasing hormone. Thus, both active sites of ACE possess dipeptidyl carboxypeptidase and endopeptidase activities. However, only the carboxyl-terminal active site can undergo a chloride-induced alteration that greatly enhances the hydrolysis of AI or substance P, and the amino-terminal active site possesses an unusual amino-terminal endoproteolytic specificity for a natural peptide. This suggests physiologically important differences between the subsites of the two active centers, and different substrate specificity, despite the high degree of sequence homology.

展开

DOI:

10.1016/S0021-9258(18)98378-X

被引量:

557

年份:

1993

通过文献互助平台发起求助,成功后即可免费获取论文全文。

我们已与文献出版商建立了直接购买合作。

你可以通过身份认证进行实名认证,认证成功后本次下载的费用将由您所在的图书馆支付

您可以直接购买此文献,1~5分钟即可下载全文,部分资源由于网络原因可能需要更长时间,请您耐心等待哦~

身份认证 全文购买

相似文献

参考文献

引证文献

来源期刊

引用走势

2001
被引量:38

站内活动

辅助模式

0

引用

文献可以批量引用啦~
欢迎点我试用!

关于我们

百度学术集成海量学术资源,融合人工智能、深度学习、大数据分析等技术,为科研工作者提供全面快捷的学术服务。在这里我们保持学习的态度,不忘初心,砥砺前行。
了解更多>>

友情链接

百度云百度翻译

联系我们

合作与服务

期刊合作 图书馆合作 下载产品手册

©2025 Baidu 百度学术声明 使用百度前必读

引用