The nature of the hydrated excess proton in water

来自 Nature

阅读量:

232

摘要:

Explanations for the anomalously high mobility of protons in liquid water began with Grotthuss's idea(1,2) of structural diffusion' nearly two centuries ago. Subsequent explanations have refined this concept by invoking thermal hopping(3,4), proton tunnelling(5,6) or solvation effects(7). More recently, two main structural models have emerged for the hydrated proton. Eigen(8,9) proposed the formation of an H9O4+ complex in which an H3O+ core is strongly hydrogen-bonded to three H2O molecules. Zundel(10,11), meanwhile, supported the notion of an H5O2+ complex in which the proton is shared between two H2O molecules. Here we use ab initio path integral(12-14) simulations to address this question, These simulations include time-independent equilibrium thermal and quantum fluctuations of all nuclei, and determine interatomic interactions from the electronic structure. We find that the hydrated proton forms a fluxional defect in the hydrogen-bonded network with both H9O4+ and H5O2+ occurring only in the sense of 'limiting' or 'ideal' structures. The defect can become delocalized over several hydrogen bonds owing to quantum fluctuations. Solvent polarization induces a small barrier to proton transfer, which is washed out by zero-point motion. The proton can consequently be considered part of a 'low-barrier hydrogen bond'(15,16), in which tunnelling is negligible and the simplest concepts of transition-state theory do not apply. The rate of proton diffusion is determined by thermally induced hydrogen-bond breaking in the second solvation shell.

展开

DOI:

10.1038/17579

被引量:

1002

年份:

1999

通过文献互助平台发起求助,成功后即可免费获取论文全文。

我们已与文献出版商建立了直接购买合作。

你可以通过身份认证进行实名认证,认证成功后本次下载的费用将由您所在的图书馆支付

您可以直接购买此文献,1~5分钟即可下载全文,部分资源由于网络原因可能需要更长时间,请您耐心等待哦~

身份认证 全文购买

相似文献

参考文献

引证文献

来源期刊

研究点推荐

引用走势

2010
被引量:109

站内活动

辅助模式

0

引用

文献可以批量引用啦~
欢迎点我试用!

关于我们

百度学术集成海量学术资源,融合人工智能、深度学习、大数据分析等技术,为科研工作者提供全面快捷的学术服务。在这里我们保持学习的态度,不忘初心,砥砺前行。
了解更多>>

友情链接

百度云百度翻译

联系我们

合作与服务

期刊合作 图书馆合作 下载产品手册

©2025 Baidu 百度学术声明 使用百度前必读

引用