非揮發記憶體用之高分子/核殼奈米顆粒奈米複合材料之合成與元件製備
摘要:
本計畫主要目地在發展(i)非揮發記憶體用之共軛高分子/米顆與塊狀高分子米複合材之合成與製備,(ii)製備光寫入與電抹除記憶體電晶體,(iii)製作有機場效電晶體類型記憶體電寫入與電抹除.將合成個可應用於有機記憶體之有機高分子材,這些有機高分子材包含(i)具有高吸光係數之高分子,(ii)具有高結晶性之高分子,(iii)同時具有電子施體與電子受體單體之高分子.另外地,以高分子混合含有核殼結構之屬/絕緣層與塊狀高分子包覆屬米子為目標;我們將分別以含有核殼結構之屬/絕緣層,銀與鉑之米子為目標產物,預期在摻入這些奈米子於高分子基材內形成複合材後,能增加誘導轉移電子於米顆中的滯時間與抓取能力,進而增加元件的記憶時間.此外,亦將對所合成之金屬米子的表面進改質,使米子表面能與高分子之側鏈端產生鍵結,以期能控制米子摻雜於高分子基材中之分散性與均勻.將會製作三明治結構與場效電晶體類型之電子記憶體元件,我們將分析各種同複合材及條件下的材及元件性質,經由變溫測以期望解無機-有機複合材複雜系統之電荷補捉及儲存機制.我們將使用導電式原子顯微鏡在真空的環境下,用電影像穿遂圖譜測法且透過變溫電電壓測方法探討電子於複合材中於米尺下的傳導機制,探討無機-有機複合材的存儲密,同時也可以解高分子薄膜的表面形態和傳導性質的相關性,進而建少/單一米子儲存機制的模型.The objectives of this study are (i) to develop conjugated polymer/ core-shell and diblock copolymer nanocomposite for fabricating non-volatile memory devices, (ii) to prepare optical-programming and electric-erasing memory-transistor devices and (iii) to fabricate organic effect transistor type memory. The conjugated polymer including (i) high absorbency index, (ii) high crystallinity, (iii) electron-donor and electron-acceptor moiety will be synthesized. In addition, the goal will blends core-shell nanoparticles into conjucated polymers and incorprates metal nanoparticles into diblock copolymers. We will employ core-shell, silver and plantium nanoparticle for target products and improving the electron retention time of the nanoparticles, thereby enhancing the life time of the memory device and trapping abilities. Furthermore, the surface ligands on these nanoparticles will be tailored to the side-chain-tethered functional groups of the polythiophene in such a way that weak bondings will be presented between them. In this way, these nanoparticles will be able to be dispersed homogeneoudy in the conjugated polymer matrix, thereby creating consistant morphology in the nanocomposites and minimizing variations introduced by solution processing techniques. We will analyze the reliability and the transport mechanism of the memory devices built from polymer/nanoparticle using variable temperature probe station in a high vacuum environment. The uniqueness of the bistable memory behavior in nanoscale, the transport mechanism in the high and low impedance status will be investigated. Conductive atomic force microscopy will be adopted to characterize the organic-inorganic nanocomposites material properties in the nanoscale. Current imaging tunneling spectroscopy (CITS) allows us to probe the local electronic properties of the hybrid organic-inorganic thin film as a function of the electric stress, and simultaneously correlate to the material topography. We could systematically investigate the relationship between morphology and electric properties. This technique also can be used to read and to write hybrid organic-inorganic thin film with a size as low as 20 nm. Devices with few or single gold nanoparticles in nanocomposite system and related model will be constructed to elucidate the structure, morphology and performance of the devices.
展开
年份:
2011
通过文献互助平台发起求助,成功后即可免费获取论文全文。
相似文献
参考文献
引证文献
研究点推荐
辅助模式
引用
文献可以批量引用啦~
欢迎点我试用!