Biologically produced nanosilver: Current state and future perspectives

来自 EBSCO

阅读量:

71

作者:

L SintubinW VerstraeteN Boon

展开

摘要:

Silver nanoparticles are one of the most commercialized nanomaterials. They are widely applied as biocides for their strong antimicrobial activity, but also their conductive, optic and catalytic properties make them wanted in many applications. The chemical and physical processes which are used to synthesize silver nanoparticles generally have many disadvantages and are not eco-friendly. In this review, we will discuss biological alternatives that have been developed using microorganisms or plants to produce biogenic silver. Until now, only their antimicrobial activity has been studied more into detail. In contrast, a wide range of practical applications as biocide, biosensor, and catalyst are still unexplored. The shape, size, and functionalization of the nanoparticles is defined by the biological system used to produce the nanoparticles, hence for every application a specific biological production process needs to be chosen. On the other hand, biogenic silver needs to compete with chemically produced nanosilver on the market. Large scale production generating inexpensive nanoparticles is needed. This can only be achieved when the biological production system is chosen in function of the yield. Hence, the true challenge for biogenic silver is finding the balance between scalability, price, and applicability. Biotechnol. Bioeng. 2012; 109: 2422–2436. 2012 Wiley Periodicals, Inc.

展开

DOI:

10.1002/bit.24570

被引量:

203

年份:

2012

通过文献互助平台发起求助,成功后即可免费获取论文全文。

我们已与文献出版商建立了直接购买合作。

你可以通过身份认证进行实名认证,认证成功后本次下载的费用将由您所在的图书馆支付

您可以直接购买此文献,1~5分钟即可下载全文,部分资源由于网络原因可能需要更长时间,请您耐心等待哦~

身份认证 全文购买

相似文献

参考文献

引证文献

来源期刊

引用走势

2014
被引量:54

站内活动

辅助模式

0

引用

文献可以批量引用啦~
欢迎点我试用!

关于我们

百度学术集成海量学术资源,融合人工智能、深度学习、大数据分析等技术,为科研工作者提供全面快捷的学术服务。在这里我们保持学习的态度,不忘初心,砥砺前行。
了解更多>>

友情链接

百度云百度翻译

联系我们

合作与服务

期刊合作 图书馆合作 下载产品手册

©2025 Baidu 百度学术声明 使用百度前必读

引用