Efficient Implementation of High Dimensional Model Representations

来自 Springer

阅读量:

121

作者:

Ömer F. AlışH Rabitz

展开

摘要:

Physical models of various phenomena are often represented by a mathematical model where the output(s) of interest have a multivariate dependence on the inputs. Frequently, the underlying laws governing this dependence are not known and one has to interpolate the mathematical model from a finite number of output samples. Multivariate approximation is normally viewed as suffering from the curse of dimensionality as the number of sample points needed to learn the function to a sufficient accuracy increases exponentially with the dimensionality of the function. However, the outputs of most physical systems are mathematically well behaved and the scarcity of the data is usually compensated for by additional assumptions on the function (i.e., imposition of smoothness conditions or confinement to a specific function space). High dimensional model representations (HDMR) are a particular family of representations where each term in the representation reflects the individual or cooperative contributions of the inputs upon the output. The main assumption of this paper is that for most well defined physical systems the output can be approximated by the sum of these hierarchical functions whose dimensionality is much smaller than the dimensionality of the output. This ansatz can dramatically reduce the sampling effort in representing the multivariate function. HDMR has a variety of applications where an efficient representation of multivariate functions arise with scarce data. The formulation of HDMR in this paper assumes that the data is randomly scattered throughout the domain of the output. Under these conditions and the assumptions underlying the HDMR it is argued that the number of samples needed for representation to a given tolerance is invariant to the dimensionality of the function , thereby providing for a very efficient means to perform high dimensional interpolation. Selected applications of HDMR's are presented from sensitivity analysis and time-series analysis.

展开

DOI:

10.1023/A:1010979129659

被引量:

288

年份:

2001

通过文献互助平台发起求助,成功后即可免费获取论文全文。

我们已与文献出版商建立了直接购买合作。

你可以通过身份认证进行实名认证,认证成功后本次下载的费用将由您所在的图书馆支付

您可以直接购买此文献,1~5分钟即可下载全文,部分资源由于网络原因可能需要更长时间,请您耐心等待哦~

身份认证 全文购买

相似文献

参考文献

引证文献

来源期刊

引用走势

2016
被引量:33

站内活动

辅助模式

0

引用

文献可以批量引用啦~
欢迎点我试用!

关于我们

百度学术集成海量学术资源,融合人工智能、深度学习、大数据分析等技术,为科研工作者提供全面快捷的学术服务。在这里我们保持学习的态度,不忘初心,砥砺前行。
了解更多>>

友情链接

百度云百度翻译

联系我们

合作与服务

期刊合作 图书馆合作 下载产品手册

©2025 Baidu 百度学术声明 使用百度前必读

引用