Glucocorticoids can promote androgen-independent growth of prostate cancer cells through a mutated androgen receptor.
摘要:
The androgen receptor (AR) is involved in the development, growth and progression of prostate cancer (CAP). CaP often progresses from an androgen-dependent to an androgen-independent tumor, making androgen ablation therapy ineffective. However, the mechanisms for the development of androgenindependent CaP are unclear. More than 80% of clinically androgen-independent prostate tumors show high levels of AR expression. In some CaPs, AR levels are increased because of gene amplification and/or overexpression, whereas in others, the AR is mutated. Nonetheless, the involvement of the AR in the transition of CaP to androgen-independent growth and the subsequent failure of endocrine therapy are not fully understood. Here we show that in CaP cells from a patient who failed androgen ablation therapy, a doubly mutated AR functioned as a high-affinity cortisol/cortisone receptor (AR[sup ccr]). Cortisol, the main circulating glucocorticoid, and its metabolite, cortisone, both equally stimulate the growth of these CaP cells and increase the secretion of prostate-specific antigen in the absence of androgens. The physiological concentrations of free cortisol and total cortisone in men greatly exceed the binding affinity of the AR[sup ccr] and would activate the receptor, promoting CaP cell proliferation. Our data demonstrate a previously unknown mechanism for the androgen-independent growth of advanced CaP. Understanding this mechanism and recognizing the presence of glucocorticoid-responsive AR mutants are important for the development of new forms of therapy for the treatment of this subset of CaP.
展开
被引量:
年份:
2000
相似文献
参考文献
引证文献
辅助模式
引用
文献可以批量引用啦~
欢迎点我试用!